

 Navigation

 	
 index

 	
 next |

 	ecell3 3.2.3pre2 documentation

E-Cell Simulation Environment Version 3.2.3pre2 User’s Manual

Koichi Takahashi

ktakahashi@riken.jp

RIKEN Quantitative Biology Center, Furuedai, Suita, Osaka 565-0874, Japan

	Legal
	Feedback

	Introduction
	What is ECELL

	Organization of This Manual

	Getting Started
	Preparing Simulation
	Converting EM to EML

	Compiling C++ Dynamic Modules

	Starting APP
	GUI mode

	Scripting mode

	DM search path and ECELL3_DM_PATH environment variable

	Modeling with ECELL
	Objects In The Model
	Types Of The Objects

	Object Identifiers

	Object Properties

	E-Cell Model (EM) File Basics
	What Is EM?

	EM At A Glance

	General Syntax Of EM

	Macros And Preprocessing

	Comments

	Structure Of The Model
	Top Level Elements

	Systems

	Variables And Processes

	Connecting Steppers With Entity Objects

	Connecting Variable Objects With Processes

	Modeling Schemes
	Discrete Or Continuous ?

	Some Available Discrete Classes

	Some Available Continuous Classes

	Modeling Convensions
	Units

	Modeling Tutorial
	Running the model

	Using Gillespie algorithm
	A Trivial Reaction System

	Specifying the Next Reaction method

	Defining the compartment

	Defining the variables

	Defining reaction processes

	Putting them together

	Using Deterministic Differential Equations
	Choosing Stepper and Process classes

	Converting the model

	Making the Model Switchable Between Algorithms

	A Simple Deterministic / Stochastic Composite Simulation
	A tiny multi-timescale reactions model

	Writing model file

	Custom equations
	Complex flux rate equations

	Algebraic equations

	Other Modeling Schemes
	Discrete events

	Scripting A Simulation Session
	Session Scripting

	Running ECELL Session Script
	Running ESS in command line mode

	Loading ESS from OSOGO

	Using SessionManager

	Writing ECELL Session Script
	Using Session methods

	Getting Session Parameters.

	Observing and Manipulating the Model with OBJECTSTUBs

	Handling Data Files
	About ECD file

	Importing ECDDataFile class

	Saving and loading data

	ECD header information

	Using ECD outside ECELL SE

	Binary format

	Manipulating Model Files
	Importing EML module

	Other Methods
	Getting version numbers

	DM loading-related methods

	Advanced Topics
	How ECELL3-SESSION runs

	Getting information about execution environment

	Debugging

	Profiling

	ECELL Python Library API
	SESSION Class API

	Creating New Object Classes
	About Dynamic Modules

	Defining a new class
	DMTYPE, CLASSNAME and BASECLASS

	Filename

	Include Files

	DM Macros

	Constructor And Destructor

	Types And Declarations

	Polymorph class

	Other C++ statements

	PropertySlot
	What is PropertySlot

	How to define a PropertySlot

	Using PropertySlots In Simulation

	Defining a new Process class

	Defining a new Stepper class

	Defining a new Variable class

	Defining a new System class

	Standard Dynamic Module Library
	Steppers
	DifferentialSteppers

	DiscreteEventSteppers

	DiscreteTimeStepper

	PassiveStepper

	Process classes
	Continuous Process classes

	Discrete Process classes

	Other Process classes

	Variable classes

	Simulation Mechanism of E-Cell

	Empy Module Manual

index

	Index

	Module Index

	Search Page

 Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecell3 3.2.3pre2 documentation

Legal

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License (GFDL), Version
1.1 or any later version published by the Free Software Foundation with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
You can find a copy of the GFDL in the file COPYING-DOCS distributed
with this manual.

This manual is part of a collection of E-Cell manuals distributed under
the GFDL. If you want to distribute this manual separately from the
collection, you can do so by adding a copy of the license to the manual,
as described in section 6 of the license.

Many of the names used by companies to distinguish their products and
services are claimed as trademarks. Where those names appear in any
E-Cell documentation, and the members of the E-Cell Documentation
Project are made aware of those trademarks, then the names are in
capital letters or initial capital letters.

DOCUMENT AND MODIFIED VERSIONS OF THE DOCUMENT ARE PROVIDED UNDER THE
TERMS OF THE GNU FREE DOCUMENTATION LICENSE WITH THE FURTHER
UNDERSTANDING THAT:

	DOCUMENT IS PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION,
WARRANTIES THAT THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS
FREE OF DEFECTS MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR
NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY, ACCURACY, AND
PERFORMANCE OF THE DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT IS
WITH YOU. SHOULD ANY DOCUMENT OR MODIFIED VERSION PROVE DEFECTIVE IN
ANY RESPECT, YOU (NOT THE INITIAL WRITER, AUTHOR OR ANY CONTRIBUTOR)
ASSUME THE COST OF ANY NECESSARY SERVICING, REPAIR OR CORRECTION.
THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS
LICENSE. NO USE OF ANY DOCUMENT OR MODIFIED VERSION OF THE DOCUMENT
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER; AND

	UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER IN TORT
(INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL THE AUTHOR,
INITIAL WRITER, ANY CONTRIBUTOR, OR ANY DISTRIBUTOR OF THE DOCUMENT
OR MODIFIED VERSION OF THE DOCUMENT, OR ANY SUPPLIER OF ANY OF SUCH
PARTIES, BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE,
COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER DAMAGES OR
LOSSES ARISING OUT OF OR RELATING TO USE OF THE DOCUMENT AND MODIFIED
VERSIONS OF THE DOCUMENT, EVEN IF SUCH PARTY SHALL HAVE BEEN INFORMED
OF THE POSSIBILITY OF SUCH DAMAGES.

Feedback

To report a bug or make a suggestion regarding the E-Cell Simulation Environment application or this manual, send an email to
<shafi at e-cell.org>

 Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecell3 3.2.3pre2 documentation

Introduction

What is ECELL

The APP is a software environment for simulation of various cellular
phenomena.

Organization of This Manual

This manual has the following chapters.

	Introduction – you are here

	Getting Started

	Modeling with E-Cell

	Scripting E-Cell

	Creating New Object Classes

	Standard Dynamic Module Library

If you are just to start using APP Version 3 as a user, read chapters
2, 3, and try it in your project. Read the rest parts if you feel it is
necessary. Especially you may want to browse chapter 6 to know what
classes are available to create your model. If you cannot find what you
need in that chapter, you may want to develop your own module by reading
chapter 5. Reading chapter 4 will help you to automate your simulation
runs. If you are a frontend module developer of APP written in PYTHON,
read mainly chapter 4. You may also want to read chapters 2 and 3 if you
are not already familiar with how the system is organized and used. If
you are a C++ Dynamic Module developer, (for example, to create a new
algorithm module) you need to read at least the chapter 5. Read chapters
2 and 3 if you are not already familiar with ECELL. Also, you may want
to read the chapter 6 to know how existing classes are designed.

 Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecell3 3.2.3pre2 documentation

Getting Started

By reading this chapter, you can get information about the following
items.

What types of files are needed to run the simulator.
How to prepare the files needed to run the simulator.
How to run the simulation with APP.

Preparing Simulation

To start the simulation, you need to have these types of files:

	A model file in EML format.

	(optionally) shared object files (.so in Linux operating system), if
you are using special classes of object in the model file which is
not provided by the system by default.

	(optionally) a script file (ECELL Session Script, or ESS) to automate
the simulation session.

Converting EM to EML

Simulation models for ECELL is often written in EM format. To convert EM
(.em) files to EML (.eml) files, type the following command.

ecell3-em2eml filename.em

You can obtain the full description of the command line options giving
-h option to ecell3-em2eml.

ecell3-eml2em -- convert eml to em

Usage:
 ecell3-eml2em [-h] [-f] [-o outfile] infile

Options:
 -h or --help : Print this message.
 -f or --force : Force overwrite even if outfile already exists.
 -o or --outfile=: Specify output file name. '-' means stdout.

Compiling C++ Dynamic Modules

You might have some Dynamic Modules (or DM in short) specifically made
for the simulation model in the form of C++ source code. If that is the
case, those files have to be compiled and linked to form shared module
files (usually suffixed by .so on Unix-like platforms, .dylib on
Mac OS X or .dll on Windows) before running the simulation. You will
also need to set ECELL3_DM_PATH environment variable to the
appropriate value to use the DMs (discussed below).

To compile and like DMs, ecell3-dmc command is provided for
convenience.

	The arguments given before the file name (``[command

	options]`` are interpreted as options to the ecell3-dmc

command itself.

The arguments after the file name are passed to a backend compiler (such
as g++) as-is. The backend compiler used is the same as that used to
build the system itself.

To inspect what the command actually does inside, enable verbose mode by
specifying -v option.

To get a full list of available ecell3-dmc options, invoke the
command with -h option, and without the input file. Here is the help
message shown by issuing ecedll3-dmc -h. Compile dynamic modules
for E-Cell Simulation Environment Versin 3. Usage: ecell3-dmc [
ecell3-dmc options] sourcefile [compiler options] ecell3-dmc
-h|–help ecell3-dmc options: –no-stdinclude Don’t set standard
include file path. –no-stdlibdir Don’t set standard include file path.
–ldflags=[ldflags] Specify options to the linker. –cxxflags=[cxxflags]
Override the default compiler options. –dmcompile=[path] Specify
dmcompile path. -v or –verbose Be verbose. -h or –help Print this
message.

Starting APP

You can start APP either in scripting mode and GUI mode.

GUI mode

To start APP in GUI mode, type the following command.

&

This will invoke an instance of the simulator with Osogo Session Manager
attached as a GUI frontend.

Scripting mode

To start APP in scripting mode, type the following command:

where filename.ess is the name of the Python script file you want to
execute.

If filename.ess is omitted, the interpreter starts up in interactive
mode.

See chapter 5 for the scripting feature.

DM search path and ECELL3_DM_PATH environment variable

If your model makes use of non-standard DMs that you had to build using
ecell3-dmc, then you need to specify the directory where the DMs are
placed in ECELL3_DM_PATH environment variable. ECELL3_DM_PATH
can have multiple directory names separated by either : (colon) on
Unix-like platform or ; (semicolon) on Windows.

The following is an example of setting ECELL3_DM_PATH before
launching ecell3-session-monitor:

Note that up to E-Cell SE 3.1.105, the current working directory was
implicitly treated as if it was included in ECELL3_DM_PATH. This
quirk is removed since 3.1.106.

 Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecell3 3.2.3pre2 documentation

Modeling with ECELL

By reading this chapter, you can get information about:

How an ECELL’s simulation model is organized.
How to create a simulation model.
How to write a model file in EM format.

Objects In The Model

ECELL’s simulation model is fully object-oriented. That is, the
simulation model is actually a set of objects connected each other.
The objects have properties, which determine characteristics of the
objects (such as a reaction rate constant if the object represent a
chemical reaction) and relationships between the objects.

Types Of The Objects

A simulation model of APP consists of the following types of objects.

	Usually more than one ENTITY objects

	One or more STEPPER object(s)

ENTITY objects define the structure of the simulation model and
represented phenomena (such as chemical reactions) in the model. STEPPER
objects implement specific simulation algorithms.

Entity objects

The ENTITY class has three subclasses:

	VARIABLE

This class of objects represent state variables. A VARIABLE object
holds a scalar real-number value. A set of values of all VARIABLE
objects in a simulation model defines the state of the model at a
certain point in time.

	PROCESS

This class of objects represent phenomena in the simulation model
that result in changes in the values of one or more VARIABLE objects.
The way of change of the VARIABLE values can be either discrete or
continuous.

	SYSTEM

This class of objects define overall structure of the model. A SYSTEM
object can contain sets of these three types of ENTITY, VARIABLE,
PROCESS, and SYSTEM objects. A SYSTEM can contain other SYSTEMs, and
can form a tree-like structure.

Stepper objects

A model must have one or more STEPPER object(s). Each PROCESS and SYSTEM
object must be connected with a STEPPER object in the same model. In
other words, STEPPER objects in the model have non-overlapping sets of
PROCESS and SYSTEM objects.

STEPPER is a class which implement a specific simulation algorithm. If
the model has more than one STEPPER objects, the system conducts a
multi-stepper simulation. In addition to the lists of PROCESS and SYSTEM
objects, a STEPPER has a list of VARIABLE objects that can be read or
written by its PROCESS objects. It also has a time step interval as a
positive real-number. The system schedules STEPPER objects according to
the step intervals, and updates the current time.

When called by the system, a STEPPER object integrates values of related
VARIABLE objects to the current time (if the model has a differential
component), calls zero, one or more PROCESS objects connected with the
STEPPER in an order determined by its implementation of the algorithm,
and determines the next time step interval. See the following chapters
for details of the simulation procedure.

Object Identifiers

APP uses several types of identifier strings to specify the objects,
such as the ENTITY and STEPPER objects, in a simulation model.

ID (ENTITYID and STEPPERID)

Every ENTITY and STEPPER object has an ID. ID is a character string of
arbitrary length starting from an alphabet or ‘_’ with succeeding
alphabet, ‘_’, and numeric characters. APP treats IDs in a
case-sensitive way.

If the ID is used to indicate a STEPPER object, it is called a
STEPPERID. The ID points to an ENTITY object is refered to as ENTITYID,
or just ID.

(need EBNF here)

Examples: _P3, ATP, GlucoKinase

SystemPath;

The SYSTEMPATH identifies a SYSTEM from the tree-like hierarchy of
SYSTEM objects in a simulation model. It has a form of ENTITYID strings
joined by a character ‘/’ (slash). As a special case, the SYSTEMPATH of
the root system is /. For instance, if there is a SYSTEM A, and
A has a subsystem B, a SYSTEMPATH /A/B specifies the SYSTEM
object B. It has three parts: (1) the root system (/), (2) the
SYSTEM A directly under the root system, and (3) the SYSTEM B
just under A.

A SYSTEMPATH can be relative. The relative SYSTEMPATH does not point at
a SYSTEM object unless the current SYSTEM is given. A SYSTEMPATH is
relative if (1) it does not start with the leading / (the root
system), or (2) it contains ‘.‘ (the current system) or ‘..‘
(the super-system).

Examples: /A/B, ../A, ., /CELL/ER1/../CYTOSOL

FullID

A FULLID (FULLy qualified IDentifier) identifies a unique ENTITY object
in a simulation model. A FULLID comprises three parts, (1) a ENTITYTYPE,
(2) a SYSTEMPATH, and (3) an ENTITYID, joined by a character ‘:‘
(colon).

::

The ENTITYTYPE is one of the following class names:

	SYSTEM

	PROCESS

	VARIABLE

For example, the following FULLID points to a PROCESS object of which
ENTITYID is ‘P‘, in the SYSTEM ‘CELL‘ immediately under the
root system (/). Process:/CELL:P

FullPN

FULLPN (FULLy qualified Property Name) specifies a unique property
(see the next section) of an ENTITY object in the simulation model. It
has a form of a FULLID and the name of the property joined by a
character ‘:‘ (colon).

:

or,

:::

The following FULLPN points to ‘Value’ property of the VARIABLE object
Variable:/CELL:S. Variable:/CELL:S:Value

Object Properties

ENTITY and STEPPER objects have properties. A property is an attribute
of a certain object associated with a name. Its value can be get from
and set to the object.

Types of object properties

A value of a property has a type, which is one of the followings.

	REAL number

(ex. 3.33e+10, 1.0)

	INTEGER number

(ex. 3, 100)

	STRINGTYPE

STRINGTYPE has two forms: quoted and not quoted. A quoted STRINGTYPE
can contain any ASCII characters except the quotation characters (‘
or ”). Quotations can be omitted if the string has a form of a valid
object identifier (ENTITYID, STEPPERID, SYSTEMPATH, FULLID, or
FULLPN).

If the STRINGTYPE is triple-quoted (by ''' or """), it can
contain new-line characters. (The current version still has some
problems processing this.)

	(ex. _C10_A, Process:/A/B:P1, ``“It can

	include spaces if double-quoted.”``,

	``‘single-quote is available too, if you want to

	use “double-quotes” inside.’``)

	List

The list can contain REAL, INTEGER, and STRINGTYPE values. This list
can also contain other lists, that is, the list can be nested. A list
must be surrounded by brackets ([and]), and the elements
must be separated by space characters. In some cases outermost
brackets are omitted (such as in EM files, see below).

	(ex. ``[A 10 [1.0 “a string” 1e+10]

]``)

Dynamic type adaptation of property values

The system automatically convert the type of the property value if it is
different from what the object in the simulator (such as PROCESS and
VARIABLE) expects to get. That is, the system does not necessary raise
an error if the type of the given value differs from the type the
backend object accepts. The system tries to convert the type of the
value given in the model file to the requested type by the objects in
the simulator. The conversion is done by the objects in the simulator,
when it gets a property value. See also the following sections.

The conversion is done in the following manner.

	From a numeric value (REAL or INTEGER)

	To a STRINGTYPE

The number is simply converted to a character string. For example,
a number 12.3 is converted to a STRINGTYPE '12.3'.

	To a list

A numeric value can be converted to a length-1 list which has that
number as the first item. For example, 12.3 is equivalent to ‘[
12.3]’.

	From a STRINGTYPE

	To a numeric value (REAL or INTEGER)

The initial portion of the STRINGTYPE is converted to a numeric
value. The number can be represented either in a decimal form or a
hexadecimal form. Leading white space characters are ignored.
‘INF’ and ‘NAN’ (case-insensitive) are converted to an infinity
and a NaN (not-a-number), respectively. If the initial portion of
the STRINGTYPE cannot be converted to a numeric value, it is
interpreted as a zero (0.0 or 0). This conversion procedure is
equivalent to C functions strtol and strtod, according to
the destined type.

	To a list

A STRINGTYPE can be converted to a length-1 list which has that
STRINGTYPE as the first item. For example, ‘string’ is equivalent
to ‘[‘string’]’.

	From a list

	To a numeric or a STRINGTYPE value

It simply takes the first item of the list. If necessary the taken
value is further converted to the destined types.

Note

When converting from a REAL number to an INTEGER, or from a
STRINGTYPE to a numeric value, overflow and underflow can occur
during the conversion. In this case an exception (TYPE??) is raised
when the backend object attempts the conversion.

E-Cell Model (EM) File Basics

Now you know the ECELL’s simulation model consists of what types of
objects, and the objects have their properties. The next thing to
understand is how the simulation model is organized: the structure of
the model. But wait, learn the syntax of the ECELL model (EM) file
before proceeding to the next section would help you very much to
understand the details of the structure of the model, because most of
the example codes are in EM.

What Is EM?

In APP, the standard file format of model description and exchange is
XML-based EML (E-Cell Model description Language). Although EML is an
ideal means of integrating E-Cell with other software components such as
GUI model editors and databases, it is very tedious for human users to
write and edit by hand.

E-Cell Model (EM) is a file format with a programming language-like
syntax and a powerful embedded EMPY preprocessor, which is designed to
be productive and intuitive especially when handled by text editors and
other text processing programs. Semantics of EM and EML files are almost
completely equivalent to each other, and going between these two formats
is meant to be possible with no loss of information (some exceptions are
comments and directions to the preprocessor in EM). The file suffix of
EM files is ”.em”.

Why and when use EM?

Although E-Cell Modeling Environment (which is under development) will
provide means of more sophisticated, scalable and intelligent model
construction on the basis of EML, learning syntax and semantics of EM
may help you get the idea of how object model inside ECELL is organized
and how it is driven to conduct simulations. Furthermore, owing to the
nature of the plain programming language-like syntax, EM can be used as
a simple and intuitive tool to communicate with other ECELL users. In
fact, this manual uses EM to illustrate how the model is constructed in
ECELL

EM files can be viewed as EML generator scripts.

EM At A Glance

Before getting into the details of EM syntax, let’s have a look at a
tiny example. It’s very simple, but you do not need to understand
everything for the moment.

Stepper ODEStepper(ODE_1)
{
 # no property
}

System System(/)
{
 StepperID ODE_1;

 Variable Variable(SIZE)
 {
 Value 1e-18;
 }

 Variable Variable(S)
 {
 Value 10000;
 }

 Variable Variable(P)
 {
 Value 0;
 }

 Process MassActionFluxProcess(E)
 {
 Name "A mass action from S to P."
 k 1.0;

 VariableReferenceList [S0 :.:S -1]
 [P0 :.:P 1];
 }

}

This example is a model of a mass-action differential equation. In this
example, the model has a STEPPER ODE_1 of class ODEStepper, which is
a generic ordinary differential equation solver. The model also has the
root system (/). The root sytem has the StepperID property, and four
ENTITY objects, VARIABLEs SIZE, S and P, and the PROCESS
E. SIZE is a special name of the VARIABLE, that determines the
size of the compartment. If the compartment is three-dimensional, it
means the volume of the compartment in [L] (liter). That value is used
to calculate concentrations of other VARIABLEs. These ENTITY objects
have their property values of several different types. For example,
StepperID of the root system is the string without quotes
(ODE_1). The initial value given to Value property of the VARIABLE
S is an integer number 10000 (and this is automatically
converted to a real number 10000.0 when the VARIABLE gets it because
the type of the Value property is REAL). Name property of the PROCESS
E is the quoted string "A mass action from S to P", and ‘k’ of it is the real number
1.0. VariableReferenceList property of E is the list of two
lists, which contain strings (such as S0), and numbers (such as
-1). The list contain relative FULLIDs (such as :.:S) without
quotes.

General Syntax Of EM

Basically an EM is (and thus an EML is) a list of just one type of
directives: object instantiation. As we have seen, ECELL’s simulation
models have only two types of ‘objects’; STEPPER and ENTITY. After
creating an object, property values of the object must be set. Therefore
the object instantiation has two steps: (1) creating the object and (2)
setting properties.

General form of object instantiation statements

The following is the general form of definition (instantiation) of an
object in EM:

TYPE CLASSNAME(ID)
"""INFO ()"""
{
 PROPERTY_NAME_1 PROPERTY_VALUE_1;
 PROPERTY_NAME_2 PROPERTY_VALUE_2;
 ...
 PROPERTY_NAME_n PROPERTY_VALUE_n;
}

where:

	TYPE

The type of the object, which is one of the followings:

	STEPPER

	VARIABLE

	PROCESS

	SYSTEM

	ID

This is a StepperID if the object type is STEPPER. If it is SYSTEM,
put a SYSTEMPATH here. Fill in an ENTITYID if it is a VARIABLE or a
PROCESS.

	CLASSNAME

The classname of this object. This class must be a subclass of the
baseclass defined by TYPE. For example, if the TYPE is PROCESS,
CLASSNAME must be a subclass of PROCESS, such as
MassActionFluxProcess.

	INFO

An annotation for this object. This field is optional, and is not
used in the simulation. A quoted single-line (“string”) or a
multi-line string (“”“multi-line string”“”) can be put here.

	PROPERTY

An object definition has zero or more properties.

The property starts with an unquoted property name string, followed
by a property value, and ends with a semi-colon (;). For example,
if the property name is Concentration and the value is 10.0, it
may look like: Concentration 10.0;

REAL, INTEGER, STRINGTYPE, and List are allowed as property value
types (See the Object Properties section above).

If the value is a List, outermost brackets are omitted. For example,
to put a list

[10 "string" [LIST]]

into a property slot Foo, write a line in the object definition
like this: Foo 10 “string” [LIST];

Note

All property values are lists, even if it is a scalar REAL
number. Remember a number ‘1.0’ is interconvertible with a
length-1 list ‘[1.0]’. Therefore the system can correctly
interpret property values without the brackets.

In other words, if the property value is bracketed, for example,
the following property value

Foo [10 [LIST]];

is interpreted by the system as a length-1 List

[[10 [LIST]]]

of which the first item is a list

[10 [LIST]]

This may or may not be what you intend to have.

Macros And Preprocessing

Before converting to EML, ecell3-em2eml command invokes the EMPY
program to preprocess the given EM file.

By using EMPY, you can embed any PYTHON expressions and statements after
‘@’ in an EM file. Put a PYTHON expression inside ‘@(python expression
)’, and the macro will be replated with an evaluation of the expression.
If the expression is very simple, ‘()’ can be ommited. Use ‘@{ pytyon
statements }’ to embed PYTHON statements. For example, the following
code:

@(AA='10')
@AA

is expanded to:

10

Of course the statement can be multi-line. This code

@{
 def f(str):
 return str + ' is true.'
}

@f('Video Games Boost Visual Skills')

is expanded to

Video Games Boost Visual Skills is true.

EMPY can also be used to include other files. The following line is
replaced with the content of the file foo.em immediately before the
EM file is converted to an EML:

@include('foo.em')

Use -E option of ecell3-em2eml command to see what happens in
the preprocessing. With this option, it outputs the result of the
preprocessing to standard output and stops without creating an EML file.

It has many more nice features. See the appendix A for the full
description of the EMPY program.

Comments

The comment character is a sharp ‘#’. If a line contains a ‘#’ outside a
quoted-string, anything after the character is considered a comment, and
not processed by the ecell3-em2eml command.

This is processed differently from the EMPY comments (@#). This comment
character is processed by the EMPY as a usual character, and does not
have an effect on the preprocessor. That is, the part of the line after
‘#’ is not ignored by EMPY preprocessor. To comment out an EMPY macro,
the EMPY comment (@#) must be used.

Structure Of The Model

Top Level Elements

Usually an EM has one or more STEPPER and one or more SYSTEM statements.
These statements are top-level elements of the file. General structure
of an EM file may look like this:

STEPPER_0
STEPPER_1
...
STEPPER_n

SYSTEM_0 # the root system ('/')
SYSTEM_1
...
SYSTEM_m

STEPPER_? is a STEPPER statement and SYSTEM_? is a SYSTEM
statement.

Systems

The root system

The model must have a SYSTEM with a SYSTEMPATH ‘/‘. This SYSTEM is
called the root system of the model.

System System(/)
{
 # ...
}

The class of the root system is always System, no matter what class you
specify. This is because the simulator creates the root sytem when it
starts up, before loading the model file. That is, the statement does
not actually create the root system object when loading the EML file,
but just set its property values. Consequently the class name specified
in the EML is ignored. The model file must always have this root system
statement, even if you have no property to set.

Constructing the system tree

If the model has more than one SYSTEM objects, it must form a tree which
starts from the root system (/). For example, the following is not a
valid EM.

System System(/)
{
}

System System(/CELL0/MITOCHONDRION0)
{
}

This is invalid because these two SYSTEM objects, / and
/CELL0/MITOCHONDRION0 are not connected to each other, nor form a
single tree. Adding another SYSTEM, /CELL0, makes it valid.

System System(/)
{
}

System System(/CELL0)
{
}

System System(/CELL0/MITOCHONDRION0)
{
}

Of course a SYSTEM can have arbitrary number of sub-systems.

System System(/)
{
}

System System(/CELL1) {}
System System(/CELL2) {}
System System(/CELL3) {}
...

Note

In future versions, the system will support composing a model from
multiple model files (EMs or EMLs). This is not the same as the EM's
file inclusion by EMPY preprocessor.

Sizes of the Systems

If you want to define the size of a SYSTEM, create a VARIABLE with an ID
‘SIZE‘. If the SYSTEM models a three-dimensional compartment, the
SIZE here means the volume of that compartment. The unit of the
volume is [L] (liter). In the next example, size of the root system is
1e-18.

System System(/)
{
 Variable Variable(SIZE) # the size (volume) of this compartment
 {
 Value 1e-18;
 }
}

If a System has no ‘SIZE‘ VARIABLE, then it shares the SIZE
VARIABLE with its supersystem. The root system always has its SIZE
VARIABLE. If it is not given by the model file, then the simulator
automatically creates it with the default value 1.0. The following
example has four SYSTEM objects, and two of them (/ and
/COMPARTMENT) have their own SIZE variables. Remaining two
(/SUBSYSTEM and its subsystem /SUBSYSTEM/SUBSUBSYSTEM) share the
SIZE VARIABLE with the root system.

System System(/) # SIZE == 1.0 (default)
{
 # no SIZE
}

System System(/COMPARTMENT) # SIZE == 2.0e-15
{
 Variable Variable(SIZE)
 {
 Value 2.0e-15
 }
}

System System(/SUBSYSTEM) # SIZE == SIZE of the root sytem
{
 # no SIZE
}

System System(/SUBSYSTEM/SUBSUBSYSTEM) # SIZE == SIZE of the root system
{
 # no SIZE
}

Note

Behavior of the system when zero or negative number is set to SIZE
is undefined.

Note

Currently, the unit of the SIZE is (10 cm)^\ *d*, where d is
dimension of the SYSTEM. If d is 3, it is (10 cm)^3 == liter. This
specification is still under discussion, and is subject to change in
future versions.

Variables And Processes

A SYSTEM statement has zero, one or more VARIABLE and PROCESS statements
in addition to its properties.

System System(/)
{
 # ... properties of this System itself comes here..

 Variable Variable(V0) {}
 Variable Variable(V1) {}
 # ...
 Variable Variable(Vn) {}

 Process SomeProcess(P0) {}
 Process SomeProcess(P1) {}
 # ...
 Process OtherProcess(Pm) {}
}

Do not put a SYSTEM statement inside SYSTEM.

Connecting Steppers With Entity Objects

Any PROCESS and VARIABLE object in the model must be connected with a
STEPPER by setting its StepperID property. If the StepperID of a PROCESS
is omitted, it defaults to that of its supersystm (the SYSTEM the
PROCESS belongs to). StepperID of SYSTEM cannot be omitted.

In the following example, the root sytem is connected to the STEPPER
STEPPER0, and the PROCESS P0 and P1 belong to STEPPERs
STEPPER0 and STEPPER1, respectively.

Stepper SomeClassOfStepper(STEPPER0) {}
Stepper AnotherClassOfStepper(STEPPER1) {}

System System(/) # connected to STEPPER0
{
 StepperID STEPPER0;

 Process AProcess(P0) # connected to STEPPER0
 {
 # No StepperID specified.
 }

 Process AProcess(P1) # connected to STEPPER1
 {
 StepperID STEPPER1;
 }
}

Connections between STEPPERs and VARIABLEs are automatically determined
by the system, and cannot be specified manually. See the next section.

Connecting Variable Objects With Processes

A PROCESS object changes values of VARIABLE object(s) according to a
certain procedure, such as the law of mass action. What VARIABLE objects
the PROCESS works on cannot be determined when it is programmed, but it
must be specified by the modeler when the PROCESS takes part in the
simulation. VariableReferenceList property of the PROCESS relates some
VARIABLE objects with the PROCESS.

VariableReferenceList is a list of VARIABLEREFERENCEs. A
VARIABLEREFERENCE, in turn, is usually a list of the following four
elements:

[]

The last two fields can be omitted:

[]

or,

[]

These elements have the following meanings.

	Reference name

This field gives a local name inside the PROCESS to this
VARIABLEREFERENCE. Some PROCESS classes use this name to identify
particular instances of VARIABLEREFERENCE.

Currently, this reference name must be set for all
VARIABLEREFERENCEs, even if the PROCESS does not use the name at all.

Lexical rule for this field is the same as the ENTITYID; leading
alphabet or ‘_’ with trailing alphabet, ‘_’, and numeric
characters.

	FULLID

This FULLID specifies the VARIABLE that this VARIABLEREFERENCE points
to.

The SYSTEMPATH of this FULLID can be relative. Also, ENTITYTYPE can
be omitted. That is, writing like this is allowed:

:.:S0

instead of

Variable:/CELL:S0

, if the PROCESS exists in the SYSTEM /CELL.

	Coefficient (optional)

This coefficient is an integer value that defines weight of the
connection between the PROCESS and the VARIABLE that this
VARIABLEREFERENCE points to.

If this value is a non-zero integer, then this VARIABLEREFERENCE is
said to be a mutator VARIABLEREFERENCE, and the PROCESS can change
the value of the VARIABLE. If the value is zero, this
VARIABLEREFERENCE is not a mutator, and the PROCESS should not change
the value of the VARIABLE.

If the PROCESS represents a chemical reaction, this value is usually
interpreted by the PROCESS as a stoichiometric constant. For example,
if the coefficient is -1, the value of the VARIABLE is decreased by 1
in a single occurence of the forward reaction.

If omitted, this field defaults to zero.

	isAccessor flag (optional)

This is a binary flag; set either 1 (true) or 0 (false). If this
isAccessor flag is false, it indicates that the behavior of PROCESS
is not affected by the VARIABLE that this VARIABLEREFERENCE points
to. That is, the PROCESS never reads the value of the VARIABLE. The
PROCESS may or may not change the VARIABLE regardless of the value of
this field.

Some PROCESS objects automatically sets this information, if it knows
it never changes the value of the VARIABLE of this VARIABLEREFERENCE.
Care should be taken when you set this flag manually, because many
PROCESS classes do not check this flag when actually read the value
of the VARIABLE.

The default is 1 (true). This field is often omitted.

Note

In multi-stepper simulations, this information sometimes helps
the system to run efficiently. If the system knows, for example,
all PROCESS objects in the STEPPER A do not change any
VARIABLE connected to the other STEPPER B, it can give B
more chance to have larger stepsizes, rather than always checking
whether STEPPER A changed some of the VARIABLE objects. This
flag is mainly used when there are more than one STEPPERs.

Consider a reaction PROCESS in the root system, R, consumes the
VARIABLE S and produces the VARIABLE P, taking E as the
enzyme. This class of PROCESS requires to give the enzyme as a
VARIABLEREFERENCE of name ENZYME. All the VARIABLE objects are in
the root system. In EM, VariableReferenceList of this PROCESS may appear
like this:

System System(/)
{
 # ...
 Variable Variable(S) {}
 Variable Variable(P) {}
 Variable Variable(E) {}

 Process SomeReactionProcess(R)
 {
 # ...
 VariableReferenceList [S0 :.:S -1]
 [P0 :.:P 1]
 [ENZYME :.:E 0];

 }
}

Modeling Schemes

ECELL is a multi-algorithm simulator. It can run any kind of simulation
algorithms, both discrete and continuous, and these simulation
algorithms can be used in any combinations. This section exlains how you
can find appropriate set of object classes for your modeling and
simulation projects. This section does not give a complete list of
available object classes nor detailed usage of those classes. Read the
chapter “Standard Dynamic Module Library” for more info.

Discrete Or Continuous ?

ECELL can model both discrete and continuous processes, and these can be
mixed in simulation. The system models discrete and continuous systems
by discriminating two different types of PROCESS and STEPPER objects:
discrete PROCESS / STEPPER and continuous PROCESS / STEPPER.

Note

VARIABLE and SYSTEM do not have special discrete and continuous
classes. The base VARIABLE class supports both discrete and
continous operations, because it can be connected to any types of
PROCESS and STEPPER objects. SYSTEM objects do not do any
computation that needs to discriminate discrete and continuos.

Discrete classes

A PROCESS object that models discrete changes of one or more VARIABLE
objects is called a discrete PROCESS, and it must be used in
conjunction with a discrete STEPPER. A discrete PROCESS directly
changes the values of related VARIABLE objects when its STEPPER
requests to do so.

There are two types of discrete PROCESS / STEPPER classes: discrete and
discrete event.

	Discrete

A discrete PROCESS changes values of connected VARIABLE objects (i.e.
appear in its VariableReferenceList property) discretely. In the
current version, there is no special class named DiscreteProcess,
because the base PROCESS class is already a discrete PROCESS by
default. The manner of the change of VARIABLE values is determined
from values of its accessor VARIABLEREFERENCEs, its property values,
and sometimes the current time of the STEPPER. Unlike discrete event
PROCESS, which is explained in the next item, it does not necessary
specify when the discrete changes of VARIABLE values occur. Instead,
it is unilaterally determined and fired by a discrete STEPPER.

A STEPPER that requires all PROCESS objects connected is discrete
PROCESS objects is call a discrete STEPPER. The current version has
no special class DiscreteStepper, because the base STEPPER class is
already discrete.

	Discrete event

Discrete event is a special case of discreteness. The system provides
DiscreteEventStepper and DiscreteEventProcess classes for
discrete-event modeling. In addition to the ordinary firing method
(fire() method) of the base PROCESS class, the DiscreteEventProcess
defines a method to calculate when is the next occurrence of the
event (the discrete change of VARIABLE values that this discrete
event PROCESS models) from values of its accessor VARIABLEREFERENCEs,
its property values, and the current time of the STEPPER.
DiscreteEventStepper uses information given by this method to
determine when each of discrete event PROCESS should be fired.
DiscreteEventStepper is instantiatable. See the chapter Standard
Dynamic Module Library for more detailed description of how
DiscreteEventStepper works.

Continuous classes

On the other hand, a PROCESS that calculates continuous changes of
VARIABLE objects is called a continuous PROCESS, and is used in
combination with a continuous STEPPER. Continuous PROCESS objects
simulate the phenomena that represents by setting velocities of
connected VARIABLE objects, rather than directly changing their values
in the case of discrete PROCESS objects. A continuous STEPPER integrates
the values of VARIABLE objects from the velocities given by the
continuous PROCESS objects, and determines when the velocities should be
recalculated by the PROCESS objects. A typical application of continuous
PROCESS and STEPPER objects is to implement differential equations and
differential equation solvers, respectively, to form a simulation system
of the system of differential equations.

Some Available Discrete Classes

Followings are some available discrete classes.

NRStepper and GillespieProcess (Gillespie-Gibson pair)

An example of discrete-event simulation method provided by ECELL is a
variant of Gillespie’s stochastic algorithm, the Next Reaction Method,
or Gillespie-Gibson algorithm. NRStepper class implements this
algorithm. When this STEPPER is used in conjunction with
GillespieProcess objects, which is a subclass of DiscreteEventProcess
and calculates a time of the next occurence of the reaction using
Gillespie’s reaction probability equation and a random number, ECELL
conducts a Gillespie-Gibson stochastic simulation of elementary chemical
reactions. In fact, the Next Reaction Method is nothing but a standard
discrete event simulation algorithm, and NRStepper is just an alias of
the DiscreteEventStepper class.

Usage of this pair of classes of objects is simple: just set the
StepperID, VariableReferenceList and the rate constant property k of
those GillespieProcess objects.

DiscreteTimeStepper

A type of discrete STEPPER that is provided by the system is
DiscreteTimeStepper. This class of STEPPER, when instantiated, calls
all discrete PROCESS objects with a fixed user-specified time-interval.
For example, if the model has a DiscreteTimeStepper with 0.001 (second)
of StepInterval property, it fires all of its PROCESS objects every
milli-second. DiscreteTimeStepper is discrete time because it does not
have time between steps; it ignores a signal from other STEPPER objects
(STEPPER interruption) that notifies a change of system state (values
of VARIABLE objects) that may affect its PROCESS objects. Such a change
is reflected in the next step.

PassiveStepper

Another class of discrete STEPPER is PassiveStepper. This can partially
be seen as a DiscreteTimeStepper with an infinite StepInterval, but
there is a difference. Unlike DiscreteTimeStepper, this does not
ignore STEPPER interruptions, which notify change in the system state
that may affect this STEPPER’s PROCESS objects.

This STEPPER is used when some special procedures (coded in discrete
PROCESS objects) must be invoked when other STEPPER object may have
changed a value or a velocity of at least one VARIABLE that this
STEPPER’s PROCESS objects accesses.

PythonProcess

PythonProcess allows users to script a PROCESS object in full PYTHON
syntax.

initialize() and fire() methods can be scripted with InitializeMethod
and FireMethod properties, respectively.

PythonProcess can be either discrete or continuous. This ‘operation
mode’ can be specified by setting IsContinuous property. The default is
false (0), or discrete. To switch to the continuous mode, set 1 to the
property:

Process PythonProcess(PY1)
{
 IsContinuous 1;
}

In addition to regular PYTHON constructs, the following objects,
methods, and attributes are available in both of the method properties
(InitializeMethod and FireMethod):

	Properties

PythonProcess accepts arbitrary names of properties. For example, the
following code creates two new properties.

Process PythonProcess(PY1)
{
 NewProperty "new property";
 KK 3.0;
}

These properties can be use in PYTHON methods:

Process PythonProcess(PY1)
{
 # ... NewProperty and KK are set

 InitializeMethod "print NewProperty";

 FireMethod '''
KK += 1.0
print KK
''';
}

A new property can also be created within PYTHON methods.

InitializeMethod "A = 3.0"; # A is created
FireMethod "print A * 2"; # A can be used here

These properties are treated as a global variable.

	Objects

	self

This is the PROCESS object itself. This has the following
attributes:

	Activity

The current value of Activity property of this PROCESS.

	addValue(value)

Add each VARIABLEREFERENCE the value multiplied by the
coefficient of the VARIABLEREFERENCE.

Using this method implies that this PROCESS is discrete. Check
that IsContinuous property is false.

	getSuperSystem()

This method gets the super system of this PROCESS. See below
for the attributes of SYSTEM objects.

	Priority

The Priority property of this PROCESS.

	setFlux(value)

Add each VARIABLEREFERENCE’s velocity the value multiplied
by the coefficient of the VARIABLEREFERENCE.

Using this method implies that this PROCESS is continuous.
Check that IsContinuous property is true.

	StepperID

StepperID of this PROCESS.

	VARIABLEREFERENCE

VARIABLEREFERENCE instances given in the VariableReferenceList
property of this PROCESS can be used in the PYTHON methods. Each
instance has the following attributes:

	addFlux(value)

Multiply the value by the Coefficient of this
VARIABLEREFERENCE, and add that to the VARIABLE’s velocity.

	addValue(value)

Add the value to the Value property of the VARIABLE.

	addVelocity(value)

Add the value to the Velocity property of the VARIABLE.

	Coefficient

The coefficient of the VARIABLEREFERENCE

	getSuperSystem()

Get the super system of the VARIABLE. A SYSTEM object is
returned.

	MolarConc

The concentration of the VARIABLE in Molar [M].

	Name

The name of the VARIABLEREFERENCE.

	NumberConc

The concentration in number [num / size of the VARIABLE’s
super system.]

	IsFixed

Zero if the Fixed property of the VARIABLE is false. Otherwise
a non-zero integer.

	IsAccessor

Zero if the IsAccessor flag of the VARIABLEREFERENCE is false.
Otherwise a non-zero integer.

	TotalVelocity

The total current velocity. Usually of no use.

	Value

The value of the VARIABLE

	Velocity

The provisional velocity given by the currently stepping
STEPPER. Usually of no use.

	SYSTEM

A SYSTEM object has the following attributes.

	getSuperSystem()

Get the super system of the SYSTEM. A SYSTEM object is
returned.

	Size

The size of the SYSTEM.

	SizeN_A

	Equivalent to ``Size *

	N_A``, where N_A is a Avogadro’s number.

	StepperID

The StepperID of the SYSTEM.

Here is an example uses of PythonProcess.

Process PythonProcess(PY1)
{
 # IsContinuous 0; -- default
 FireMethod "S1.Value = S2.Value + S3.Value";
 VariableReferenceList [(S1)] [(S2)] [(S3)];
}

PythonEventProcess

This class enables users PYTHON scripting of time-events. In addition to
initialize() and fire(), updateStepInterval() method can be scripted
with this class. Use UpdateStepIntervalMethod property to set this.

In addition to those of PythonProcess, the self object of
PythonEventProcess has some more attributes:

	StepInterval

The most recent StepInterval calculated by the updateStepInterval()
method.

	DependentProcessList

This attribute holds a tuple of IDs of dependent PROCESSes of this
PROCESS.

This class of objects must be used with a DiscreteEventStepper.

This class is under development.

Other discrete classes

STEPPER classes for explicit and implicit tau leaping algorithms are
under development.

A flux-distribution method for hybrid dynamic/static simulation of
biochemical pathways is available with the following classes:
FluxDistributionStepper, FluxDistributionProcess,
QuasiDynamicFluxProcess. Usage of this scheme is to be described.

Some Available Continuous Classes

ECELL supports both Ordinary Differential Equation (ODE) and
Differential-Algebraic Equation (DAE) models, and has STEPPER classes
for each type of formalisms.

Also, the system is shipped with some continuous PROCESS classes. For
example, MassActionFluxProcess calculates a reaction rate according to
the law of mass action. ExpressionFluxProcess allows users to describe
arbitrary rate equations in model files. PythonProcess and
PythonFluxProcess are used to script PROCESS objects in PYTHON. Some
enzyme kinetics rate laws are also available.

Generic ordinary differential Steppers

If your model is a system of ODEs, then in this version of the software
(version APPVERSION) the recommended choice is ODEStepper. This STEPPER
is a high-performance replacement of ODE45Stepper, which was the choice
for the previous versions.

ODEStepper is implemented so that it can adaptively switch the solving
method between the implicit one (Radau IIA) and the explicit one
(Dormand-Prince), according to the current stiffness of the input.

Some other available ODE STEPPER classes are ODE23Stepper, which
employes a lower (the second) order integration algorithm, and
FixedODE1Stepper that implements the simplest Euler algorithm without an
adaptive step sizing mechanism.

These ODE STEPPER classes except for the FixedODE1Stepper have some
common property slots for user-specifiable parameters. Here is a partial
list:

	Tolerance

An error tolerance in local truncation error. Giving this smaller
numbers forces the STEPPER to take smaller step sizes, and slows down
the simulation. Greater numbers results in faster run with sacrifice
of accuracy. A typical number is 1e-6.

	MinStepInterval

Species the minimum value of step width. This limit precedes the
Tolerance property above.

These properties can also be useful to completely disable the
adaptive step size control mechanism: set the same number to both of
the property slots.

	MaxStepInterval

This property is no longer supported and has no specific effect if it
is set

MassActionFluxProcess

MassActionFluxProcess is a class of PROCESS for simple mass-actions.
This class calculates a flux rate according to the irreversible
mass-action. Use a property k to specify a rate constant.

ExpressionFluxProcess

ExpressionFluxProcess is designed for easy and efficient representations
of continuous flux rate equations.

Expression property of this class accepts a plain text rate expression.
The expression must be evaluated to give a flux rate in [number /
second]. (Note that this is a number per second, not concentration per
second.) Here is an example use of ExpressionFluxProcess:

Process ExpressionFluxProcess(P1)
{
 k 0.1;
 Expression "k * S.Value";

 VariableReferenceList [S :.:S -1] [P :.:P 1];
}

Compared to PythonProcess or PythonFluxProcess below, it runs
significantly faster with sacrifice of some flexibility in scripting.

The following shows elements those can be used in the Expression
property. The set of available arithmetic operators and mathematical
functions are meant to be equivalent to SBML level 2, except control
structures.

	Constants

Numbers (e.g. 10, 10.33, 1.33e-5), true, false (equivalent to
zero), pi (Pi), NaN (Not-a-Number), INF (Infinity),
N_A (Avogadro’s number), exp (the base of natural
logarithms).

	Arithmetic operators

+, -, *, /, ^ (power; this can equivalently be
written as pow(x, y)).

	Built-in functions

abs, ceil, exp, *fact, floor, log,
log10, pow sqrt, *sec, sin, cos, tan,
sinh, cosh, tanh, coth, *csch, *sech,
*asin, *acos, *atan, *asec, *acsc,
*acot, *asinh, *acosh, *atanh,
*asech, *acsch, *acoth. (Functions with astarisk
‘*’ are currently not available on the Windows version.)

All functions but pow are unary functions. pow is a binary
function.

	Properties

Similar to PythonProcess, ExpressionFluxProcess accepts arbitrary
name properties in the model. Unlike PythonProcess, however, these
properties of this class can hold only REAL values.

	Objects

	self

This PROCESS object itself. This has the following attribute which
is a sub set of that of PythonProcess:

	getSuperSystem()

	VARIABLEREFERENCE

VARIABLEREFERENCE instances given in the VariableReferenceList
property of this PROCESS can be used in the expression. Each
instance has the following set of attributes, which is a sub set
of that of PythonProcess:

	Value

	MolarConc

	NumberConc

	TotalVelocity

	Velocity

	SYSTEM

A SYSTEM object has the following two attributes.

	Size

	SizeN_A

Below is an example of the basic Michaelis-Menten reaction programmed
with the ExpressionFluxProcess.

Process ExpressionFluxProcess(P)
{
 Km 1.0;
 Kcat 10;

 Expression "E.Value * Kcat * S.MolarConc / (S.MolarConc + Km)";

 VariableReferenceList [S :.:S -1] [P :.:P 1] [E :.:E 0];
}

Some pre-defined reaction rate classes

See the standard dynamic module library reference for availability of
some enzyme kinetics PROCESS classes.

PythonFluxProcess

PythonFluxProcess is almost the same as PythonProcess, except that (1)
it takes just a PYTHON expression (instead of statements) to its
Expression property, and (2) similar to ExpressionFluxProcess, the
evaluated value of the expression is implicitly passed to the setFlux()
method.

Generic differential-algebraic Steppers

For DAE models, use DAEStepper. The model must form a valid index-1 DAE
system. When a DAE STEPPER detects one or more discrete PROCESS objects,
it assumes that these are algebraic PROCESS objects. Thus, all
discrete PROCESS objects in a DAE STEPPER must be algebraic. See below
for what is algebraic PROCESS.

Note

Because it can be viewed that ODE is a special case of DAE problems
which does not have a algebraic equations, but only differential
equations, a DAE STEPPER can be used to run an ODE model. However,
ODE Steppers are specialized for ODE problems, in terms of both the
selection of integration algorithms and implementation issues, and
generally use of an ODE STEPPER benefits in performance when the
model is a system of ODEs.

Those properties of ODE STEPPER classes described above (such as the
Tolerance property) are also available for DAE STEPPER classes.

Algebraic Processes

This is a type of discrete PROCESS, but placed here because it is used
with a DAE STEPPER, which is continuous.

In principle, continuous PROCESS objects must be connected with
continuous STEPPER instances, and a discrete STEPPER is assumed to take
only discrete PROCESS objects. However, there are some exceptions. One
of such is the algebraic processes. Strangely enough, in DAE
simulations, seemingly discrete algebraic equations are solved
continuously in conjunction with other differential equations.

Algebraic equations in ECELL has the following form:

0 = g(t, x)

where t is the time and x is a vector of variable references.

The DAE solver system of ECELL uses Activity property of PROCESS objects
to represent the value of the algebraic function g(t, x). An algebraic PROCESS must not change values of
VARIABLE objects explicitly. The DAE STEPPER does this job of finding a
point where the equation g() holds.

When modeling, be careful about coefficients of VARIABLEREFERENCEs of an
algebraic PROCESS. In most cases, simply set unities. The solver
respects these numbers when solving the system. For example, if the
coefficient of A is zero, it does not change the variable when
trying to find the solution, while it is used in the calculation of the
equation.

As a means of describing algebraic equations, ExpressionAlgebraicProcess
is available. The usage is the same as ExpressionFluxProcess, except
that the evaluation of its expression is interpreted as the value of the
algebraic function g().

The following examble describes an equation

a * A + B = 10, a = 1.5

Stepper DAEStepper(DAE1) {}

Process ExpressionAlgebraicProcess(P)
{
 StepperID DAE1;

 a 1.5;

 Expression "(a * A + B) - 10";

 VariableReferenceList [A :.:A 1] [B :.:B 1];
}

To use C++ or PythonProcess for algebraic equations, call setActivity()
method to set the value of the equation. The following is an example
with a PythonProcess:

Process PythonProcess(PY)
{
 a 1.5;

 FireMethod "self.setActivity((a * A + B) - 10)";

 VariableReferenceList [A :.:A 1] [B :.:B 1];
}

Power-law canonical DEs (S-System and GMA)

ESSYNSStepper supports S-System and GMA simulations by using the ESSYNS
algorithm. A ESSYNSStepper must be connected with either a
SSystemProcess or a GMAProcess as its sole VARIABLEREFERENCE. Use
SSystemMatrix or GMAMatrix property to set the system parameters.

A sample model under the directory doc/sample/ssystem/ gives an
example usage.

These modules are still under development. More descriptions to come...

Modeling Convensions

Units

In APP, the following units are used. This standard is meant only for
the simulator’s internal representation, and any units can be used in
the process of modeling. However, it must be converted to these standard
units before loaded by the simulator.

	Time

s (second)

	Volume

L (liter)

	Concentration

Molar concentration (M, or molar per L (liter), used for example in
MolarConc property of a VARIABLE object) or,

Number concentration (number per L (liter), NumberConc property of
VARIABLE has this unit).

 Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecell3 3.2.3pre2 documentation

Modeling Tutorial

This chapter is a simple modeling tutorial using ECELL.

Running the model

All the examples in this section can be run by the following procedure.

	Create and save the model file (for example, simple-gillespie.em)
with a text editor.

	Convert the EM file to an EML file by ecell3-em2eml command.

	Run it in GUI mode with gecell command.

or, in the script mode with ecell3-session command (see the
following chapter):

Using Gillespie algorithm

APP comes with a set of classes for simulations using Gillespie’s
stochastic algorithm.

A Trivial Reaction System

At the very first, let us start with the simplest possible stable system
of elementary reactions, which has two variables (in this case the
numbers of molecules of molecular species) and a couple of elementary
reaction processes. Because elementary reactions are irreversible, at
least two instances of the reactions are needed for the system to be
stable. The reaction system looks like this: – P1 –> S1 S2 <– P2 –
S1 and S2 are molecular species, and P1 and P2 are
reaction processes. Rate constants of both reactions are the same: 1.0
[1/s]. Initial numbers of molecules of S1 and S2 are 1000 and 0,
respectively. Because rate constants are the same, the system has a
steady state at S1 == S2 == 500.

Specifying the Next Reaction method

NRStepper class implements Gibson’s efficient variation of the Gillespie
algorithm, or the Next Reaction (NR) method.

To use the NRStepper in your simulation model, write like this in your
EM file:

Stepper NRStepper(NR1)
{
 # no property
}

In this example, the NRStepper has the StepperID ‘NR1‘. For now,
no property needs to be specified for this object.

Defining the compartment

Next, define a compartment, and connect it to the STEPPER NR1.
Because this model has only a single compartment, we use the root sytem
(/). Although this model does not depend on size of the compartment
because all reactions are first order, it is a good idea to always
define the size explicitly rather than letting it defaults to 1.0.
Here we set it to 1e-15 [L].

System System(/)
{
 StepperID NR1;

 Variable Variable(SIZE) { Value 1e-15; }

 # ...
}

Defining the variables

Now define the main variables S1 and S2. Use ‘Value’ properties
of the objects to set the initial values.

System System(/)
{
 # ...

 Variable Variable(S1)
 {
 Value 1000;
 }

 Variable Variable(S2)
 {
 Value 0;
 }

 # ...
}

Defining reaction processes

Lastly, create reaction process instances P1 and P2.
GillespieProcess class works together with the NRStepper to simulate
elementary reactions.

Two different types of properties, k and VariableReferenceList, must be
set for each of the GillespieProcess object. k is the rate constant
parameter in [1/sec] if the reaction is first-order, or [1/sec/M] if it
is a second-order reaction. (Don’t forget to define SIZE VARIABLE if
there is a second-order reaction.) Set VariableReferenceList properties
so that P1 consumes S1 and produce S2, and P2 uses
S2 to create S1.

System System(/)
{
 # ...

 Process GillespieProcess(P1) # the reaction S1 --> S2
 {
 VariableReferenceList [S :.:S1 -1]
 [P :.:S2 1];
 k 1.0; # the rate constant
 }

 Process GillespieProcess(P2) # the reaction S2 --> S1
 {
 VariableReferenceList [S :.:S2 -1]
 [P :.:S1 1];
 k 1.0;
 }
}

Putting them together

Here is the complete EM of the model that really works. Run this model
with gecell and open a TracerWindow to plot trajectories of S1
and S2. You will see those two VARIABLEs immediately reaching the
steady state around 500.0. If you zoom around the trajectories, you will
be able to see stochastic fluctuations.

Stepper NRStepper(NR1)
{
 # no property
}

System System(/)
{
 StepperID NR1;

 Variable Variable(SIZE) { Value 1e-15; }

 Variable Variable(S1)
 {
 Value 1000;
 }

 Variable Variable(S2)
 {
 Value 0;
 }

 Process GillespieProcess(P1) # the reaction S1 --> S2
 {
 VariableReferenceList [S :.:S1 -1]
 [P :.:S2 1];
 k 1.0; # the rate constant
 }

 Process GillespieProcess(P2) # the reaction S2 --> S1
 {
 VariableReferenceList [S :.:S2 -1]
 [P :.:S1 1];
 k 1.0;
 }
}

Using Deterministic Differential Equations

The previous section described how to create a model that runs with the
stochastic Gillespie’s algorithm. ECELL is a multi-algorithm simulator,
and different algorithms can be used to run the model. This section
explains a way to use a deterministic differential equation solver to
run the system of simple mass-action reactions.

Choosing Stepper and Process classes

In the current version, we recommend ODE45Stepper class as a
general-purpose STEPPER for differential equation systems. This STEPPER
implements an explicit fourth order numerical integration algorithm with
a fifth-order error control.

MassActionFluxProcess is the continuous differential equation conterpart
of the discrete-event GillespieProcess. Unlike GillespieProcess,
MassActionFluxProcess does not have limitation in the order of the
reaction mechanism. For example, it can handle the reaction like this:
S0 + S1 + 2 S2 --> P0 + P1.

Converting the model

Converting the trivial reaction system model for Gillespie to use
differential equations is very easy; just replace NRStepper with
ODE45Stepper, and change the classname of GillespieProcess to
MassActionFluxProcess.

The following is the model of the trivial model that runs on the
differential ODE45Stepper. You will get similar simulation result than
the stochastic model in the previous section. However, if you zoom, you
would notice that the stochastic fluctuation can no longer be observed
because the model is turned from stochastic to deterministic.

Stepper ODE45Stepper(ODE1)
{
 # no property
}

System System(/)
{
 StepperID ODE1;

 Variable Variable(SIZE) { Value 1e-15; }

 Variable Variable(S1)
 {
 Value 1000;
 }

 Variable Variable(S2)
 {
 Value 0;
 }

 Process MassActionFluxProcess(P1)
 {
 VariableReferenceList [S0 :.:S1 -1]
 [P0 :.:S2 1];
 k 1.0;
 }

 Process MassActionFluxProcess(P2)
 {
 VariableReferenceList [S0 :.:S2 -1]
 [P0 :.:S1 1];
 k 1.0;
 }
}

Making the Model Switchable Between Algorithms

Fortunately, at least as far as the model has only elementary reactions,
switching between these stochastic and deterministic algorithms is just
to switch between NRStepper/GillespieProcess pair and
ODE45Stepper/MassActionFluxProcess pair of classnames. Both PROCESS
classes takes the same property ‘k’ with the same unit.

Some use of EMPY macros makes the model generic. In the following
example, setting the PYTHON variable TYPE to ODE makes it run in
deterministic differential equation mode, and setting TYPE to NR
turns it stochastic.

@{ALGORITHM='ODE'}

@{
if ALGORITHM == 'ODE':
 STEPPER='ODE45Stepper'
 PROCESS='MassActionFluxProcess'
elif ALGORITHM == 'NR':
 STEPPER='NRStepper'
 PROCESS='GillespieProcess'
else:
 raise 'unknown algorithm: %s' % ALGORITHM
}

Stepper @(STEPPER)(STEPPER1)
{
 # no property
}

System System(/)
{
 StepperID STEPPER1;

 Variable Variable(SIZE) { Value 1e-15; }

 Variable Variable(S1)
 {
 Value 1000;
 }

 Variable Variable(S2)
 {
 Value 0;
 }

 Process @(PROCESS)(P1)
 {
 VariableReferenceList [S0 :.:S1 -1]
 [P0 :.:S2 1];
 k 1.0;
 }

 Process @(PROCESS)(P2)
 {
 VariableReferenceList [S0 :.:S2 -1]
 [P0 :.:S1 1];
 k 1.0;
 }
}

A Simple Deterministic / Stochastic Composite Simulation

ECELL can drive a model with multiple STEPPER objects. Each STEPPER can
implement different simulation algorithms, and have different time
scales. This framework of multi-algorithm, multi-timescale simulation is
quite generic, and virtually any combination of any number of different
types of sub-models is possible. This section exemplifies a tiny model
of coupled ODE and Gillespie reactions.

A tiny multi-timescale reactions model

Consider this tiny model of four VARIABLEs and six reaction PROCESSes:
– P1 –> – P4 –> S1 S2 – P3 –> S3 S4 ^ <– P2 – <– P5 – | | |
\ _______________ P6
____________________/ Although it may look
complicated at first glance, this system consists of two instances of
the ‘trivial’ system we have modeled in the previous sections coupled
together: Sub-model 1: – P1 –> S1 S2 <– P2 – and Sub-model 2: – P4
–> S3 S4 <– P5 – These two sub-models are in turn coupled by reaction
processes P3 and P6. Because time scales of P3 and P6
are determined by S2 and S4, respectively, P3 belongs to the
sub-model 1, and P6 is a part of the sub-model 2. Sub-model 1: S2 –
P3 –> S3 S1 <– P6 –> S4 :Sub-model 2 Rate constants of the main
reactions, P1, P2, P4, and P5 are the same as the
previous model: 1.0 [1/sec]. But the ‘bridging’ reactions are slower
than the main reactions: 1e-1 for P3 and 1e-3 for P6.
Consequently, sub-models 1 and 2 would have approximately
1e-1 / 1e-3 == 1e-2 times different steady-state levels. Because the
rate constants of the main reactions are the same, this implies time
scale of both sub-models are different.

Writing model file

The following code implements the multi-time scale model. The first two
lines specify algorithms to use for those two parts of the model.
ALGORITHM1 variable specifies the algorithm to use for the sub-model
1, and ALGORITHM2 is for the sub-model 2. Values of these variables
can either be 'NR' or 'ODE'.

For example, to try pure-stochastic simulation, set these variables like
this:

@{ALGORITHM1='NR'}
@{ALGORITHM2='NR'}

Setting ALGORITHM1 to 'NR' and ALGORITHM2 to 'ODE would
be an ideal configuration. This runs a magnitude faster than the
pure-stochastic configuration.

@{ALGORITHM1='NR'}
@{ALGORITHM2='ODE'}

Also try pure-deterministic run.

@{ALGORITHM1='ODE'}
@{ALGORITHM2='ODE'}

In this particular model, this configuration runs very fast because the
system easily reaches the steady-state and stiffness of the model is
low. However, this does not necessary mean pure-ODE is always the
fastest. Under some situations NR/ODE composite simulation exceeds both
pure-stochastic and pure-deterministic (reference?).

@{ALGORITHM1= ['NR' or 'ODE']}
@{ALGORITHM2= ['NR' or 'ODE']}

a function to give appropriate class names.
@{
def getClassNamesByAlgorithm(anAlgorithm):
 if anAlgorithm == 'ODE':
 return 'ODE45Stepper', 'MassActionFluxProcess'
 elif anAlgorithm == 'NR':
 return 'NRStepper', 'GillespieProcess'
 else:
 raise 'unknown algorithm: %s' % ALGORITHM1
}

get classnames
@{
STEPPER1, PROCESS1 = getClassNamesByAlgorithm(ALGORITHM1)
STEPPER2, PROCESS2 = getClassNamesByAlgorithm(ALGORITHM2)
}

create appropriate steppers.
stepper ids are the same as the ALGORITHM.
@('Stepper %s (%s) {}' % (STEPPER1, ALGORITHM1))

if we have two different algorithms, one more stepper is needed.
@(ALGORITHM1 != ALGORITHM2 ? 'Stepper %s(%s) {}' % (STEPPER2, ALGORITHM2))

System CompartmentSystem(/)
{
 StepperID @(ALGORITHM1);

 Variable Variable(SIZE) { Value 1e-15; }

 Variable Variable(S1)
 {
 Value 1000;
 }

 Variable Variable(S2)
 {
 Value 0;
 }

 Variable Variable(S3)
 {
 Value 1000000;
 }

 Variable Variable(S4)
 {
 Value 0;
 }

 Process @(PROCESS1)(P1)
 {
 VariableReferenceList [S0 :.:S1 -1] [P0 :.:S2 1];
 k 1.0;
 }

 Process @(PROCESS1)(P2)
 {
 VariableReferenceList [S0 :.:S2 -1] [P0 :.:S1 1];
 k 1.0;
 }

 Process @(PROCESS1)(P3)
 {
 VariableReferenceList [S0 :.:S2 -1] [P0 :.:S3 1];
 k 1e-1;
 }

 Process @(PROCESS2)(P4)
 {
 StepperID @(ALGORITHM2);

 VariableReferenceList [S0 :.:S3 -1] [P0 :.:S4 1];
 k 1.0;
 }

 Process @(PROCESS2)(P5)
 {
 StepperID @(ALGORITHM2);

 VariableReferenceList [S0 :.:S4 -1] [P0 :.:S3 1];
 k 1.0;
 }

 Process @(PROCESS2)(P6)
 {
 StepperID @(ALGORITHM2);

 VariableReferenceList [S0 :.:S4 -1] [P0 :.:S1 1];
 k 1e-4;
 }

}

Custom equations

Complex flux rate equations

The simplest way to script custom rate equations is to use
ExpressionFluxProcess. Here is an example taken from the Drosophila
sample model which you can find under
${datadir}/doc/ecell/samples/Drosophila [1] In this expression,
Size * N_A of the supersystem of the PROCESS is used to keep the unit
of the expression [num / second].

Process ExpressionFluxProcess(R_toy1)
{
 vs 0.76;
 KI 1;
 Expression "(vs*KI) / (KI + C0.MolarConc ^ 3)
 * self.getSuperSystem().SizeN_A";

 VariableReferenceList [P0 :.:M 1] [C0 :.:Pn 0];
}

FIXME: some more examples

Algebraic equations

Use of ExpressionAlgebraicProcess is the easiest method to describe
algebraic equations.

Be careful about the coefficients of the VARIABLEREFERENCEs. (Usually
just set unities.)

FIXME: some more examples here

Other Modeling Schemes

Discrete events

	[1]	${datadir} refers to the directory either given to --datadir
option of configure script or ${prefix}/share. On Windows,
${prefix} would be the directory to which the application is
installted.

 Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecell3 3.2.3pre2 documentation

Scripting A Simulation Session

By reading this chapter, you can get information about the following
items: What is ECELL Session Script (ESS)., How to run ESS in scripting
mode., How to use ESS in GUI mode., How to automate a simulation run by
writing an ESS file., How to write frontend software components for
ECELL in PYTHON.

Session Scripting

An ECELL Session Script (ESS) is a PYTHON script which is loaded by a
ECELL SESSION object. A SESSION instance represents a single run of a
simulation.

An ESS is used to automate a single run of a simulation session. A
simple simulation run typically involves the following five stages:

	Loading a model file.

Usually an EML file is loaded.

	Pre-simulation setup of the simulator.

Simulator and model parameters, such as initial values of VARIABLE
objects and property values of PROCESS objects, are set and/or
altered. Also, data LOGGERs may be created in this phase.

	Running the simulation.

The simulation is run for a certain length of time.

	Post-simulation data processing.

In this phase, the resulting state of the model after the simulation
and the data logged by the LOGGER objects are examined. The
simulation result may be numerically processed. If necessary, go back
to the previous step and run the simulation for more seconds.

	Data saving.

Finally, the processed and raw simulation result data are saved to
files.

An ESS file usually has an extension ‘.py‘.

Running ECELL Session Script

There are three ways to execute ESS;

	Execute the script from the operating system’s command line (the
shell prompt).

	Load the script from frontend software such as OSOGO.

	Use SESSIONMANAGER to automate the invokation of the simulation
sessions itself. This is usually used to write mathematical analysis
scripts, such as parameter tuning, which involves multiple runs of
the simulator.

Running ESS in command line mode

An ESS can be run by using ECELL3-SESSION command either in batch mode
or in interactive mode.

Batch mode

To execute an ESS file without user interaction, type the following
command at the shell prompt:

ECELL3-SESSION command creates a simulation SESSION object and executes
the ESS file ess.py on it. The option [-e] can be omitted.
Optionally, if [-f model.eml] is given, the EML file model.eml is
loaded immediately before executing the ESS.

Interactive mode

To run the ECELL3-SESSION in interactive mode, invoke the command
without an ESS file.

ecell3-session [for E-Cell SE Version 3, on Python Version 2.2.1]
Copyright (C) 1996-2014 Keio University.
Send feedback to Koichi Takahashi

The banner and the prompt shown here may vary according to the version
you are using. If the option [-f model.eml] is given, the EML file
model.eml is loaded immediately before prompting.

Giving parameters to the script

Optionally session parameters can be given to the script. Given
session parameters can be accessible from the ESS script as global
variables (see the following section).

To give the ESS parameters from the ECELL3-SESSION command, use either
-D or --parameters= option.

Both ways, -D and --parameters, can be mixed.

Loading ESS from OSOGO

To manually load an ESS file from the GUI, use File->loadScript menu
button.

GECELL command accepts -e and -f options in the same way as the
ECELL3-SESSION command.

Using SessionManager

(a separate chapter?)

Writing ECELL Session Script

The syntax of ESS is a full set of PYTHON language with some convenient
features.

Using Session methods

General rules

In ESS, an instance of SESSION is given, and any methods defined in the
class can be used as if it is defined in the global namespace.

For example, to run the simulation for 10 seconds, use run method of the
SESSION object. self.run(10) where self. points to the current SESSION
object given by the system. Alternatively, you can use theSession in
place of the self. theSession.run(10)

Unlike usual PYTHON script, you can omit the object on which the method
is called if the method is for the current SESSION. run(10)

Loading a model

Let’s try this in the interactive mode of the ECELL3-SESSION command. On
the prompt of the command, load an EML file by using loadModel() method.
ecell3-session>>> ``\ ``loadModel('simple.eml') Then the prompt
changes from ``ecell3-session>>> `` to ``, t=>>> `` ``simple.eml, t=0>>> ``

Running the simulation

To proceed the time by executing the simulation, step() and run()
methods are used.

step(n) conducts n steps of the simulation. The default value
of n is 1.

Note

In above example you may notice that the first call of step() does
not cause the time to change. The simulator updates the time at the
beginning of the step, and calculates a tentative step size after
that. The initial value of the step size is zero. Thus it needs to
call step() twice to actually proceed the time. See chapter 6 for
details of the simulation mechanism.

To execute the simulation for some seconds, call run method with a
duration in seconds. (e.g. run(10) for 10 seconds.) run method
steps the simulation repeatedly, and stops when the time is proceeded
for the given seconds. In other words, the meaning of run(10) is
to run the simulation at least 10 seconds. It always overrun the
specified length of time to a greater or less.

The system supports run without an argument to run forever, if and only
if both event checker and event handler are set. If not, it raises
an exception. See setEventChecker() in the method list of Session class.

Getting current time

To get the current time of the simulator, getCurrentTime() method can be
used.

Printing messages

You may want to print some messages in your ESS. Use message(
message) method, where message argument is a string to be
outputed.

By default the message is handled in a way the same as the Python’s
print statement; it is printed out to the standard out with a trailing
new line. This behavior can be changed by using setMessageMethod()
method.

An example of using SESSION methods

Here is a tiny example of using SESSION methods which loads a model, run
a hundred seconds, and print a short message.

loadModel('simple.eml')
run(100)
message('stopped at %f seconds.' % getCurrentTime())

Getting Session Parameters.

Session parameters are given to an ESS as global variables. Therefore
usage of the session parameters is very simple. For example, if you can
assume a session parameter MODELFILE is given, just use it as a
variable: loadModel(MODELFILE)

To check what parameters are given to ESS, use dir() or globals()
built-in functions. Session parameters are listed as well as other
available methods and variables. To check if a certain ESS parameter or
a global variable is given, write an if statement like this: if
‘MODELFILE’ in globals(): # MODELFILE is given else: # not given

Note

Currently there is no way to distinguish the Session parameters from
other global variables from ESS.

Observing and Manipulating the Model with OBJECTSTUBs

What is OBJECTSTUB?

OBJECTSTUB is a proxy object in the frontend side of the system which
corresponds to an internal object in the simulator. Any operations on
the simulator’s internal objects should be done via the OBJECTSTUB.

There are three types of OBJECTSTUB:

	ENTITYSTUB

	STEPPERSTUB

	LOGGERSTUB

each correspond to ENTITY, STEPPER, and LOGGER classes in the simulator,
respectively.

Why OBJECTSTUB is needed

OBJECTSTUB classes are actually thin wrappers over the
ecell.ecs.Simulator class of the E-Cell Python Library, which provides
object-oriented appearance to the flat procedure-oriented API of the
class. Although SIMULATOR object can be accessed directly via
theSimulator property of SESSION class, use of OBJECTSTUB is
encouraged.

This backend / frontend isolation is needed because lifetimes of backend
objects are not the same as that of frontend objects, nor are their
state transitions necessarily synchronous. If the frontend directly
manipulates the internal objects of the simulator, consistency of the
lifetime and the state of the objects can easily be violated, which must
not happen, without some complicated and tricky software mechanism.

Creating an OBJECTSTUB by ID

To get an OBJECTSTUB object, createEntityStub(), createStepperStub(),
and createLoggerStub() methods of SESSION class are used.

For example, to get an ENTITYSTUB, call the createEntityStub() method
with a FullID string:

= createEntityStub()

Similarly, a STEPPERSTUB object and a LOGGERSTUB object can be retrieved
with a StepperID and a FullPN, respectively.

= createStepperStub()

= createLoggerStub()

Creating and checking existence of the backend object

Creating an OBJECTSTUB does not necessarily mean a corresponding object
in the simulator backend exists, or is created. In other words, creation
of the OBJECTSTUB is purely a frontend operation. After creating an
OBJECTSTUB, you may want to check if the corresponding backend object
exists, and/or to command the backend to create the backend object.

To check if a corresponding object to an OBJECTSTUB exists in the
simulator, use exists() method. For example, the following if statement
checks if a Stepper whose ID is STEPPER_01 exists: aStepperStub =
createStepperStub(‘STEPPER_01’) if aStepperStub.exists(): # it
already exists else: # it is not created yet

To create the backend object, just call create() method.
aStepperStub.create()# Stepper ‘STEPPER_01’ is created here

Getting the name and a class name from an OBJECTSTUB

To get the name (or an ID) of an OBJECTSTUB, use getName() method.

To get the class name of an ENTITYSTUB or a STEPPERSTUB, call
getClassName() method. This operation is not applicable to LOGGERSTUB.

Setting and getting properties

As described in the previous chapters, ENTITY and STEPPER objects has
properties. This section describes how to access the object properties
via OBJECTSTUBs. This section is not applicable to LOGGERSTUBs.

To get a property value from a backend object by using an ENTITYSTUB or
a STEPPERSTUB, invoke getProperty() method or access an object attribute
with a property name: aValue = aStub.getProperty(‘Activity’) or
equivalently, aValue = aStub[‘Activity’]

To set a new property value to an ENTITY or a STEPPER, call
setProperty() method or mutate an object attribute with a property name
and the new value: aStub.getProperty(‘Activity’, aNewValue) or
equivalently, aStub[‘Activity’] = aNewValue

List of all the properties can be gotten by using getPropertyList
method, which returns a list of property names as a Python TUPLE
containing string objects. aStub.getPropertyList()

To know if a property is getable (accessible) or setable (mutable),
call getPropertyAttribute() with the name of the property. The method
returns a Python TUPLE whose first element is true if the property is
setable, and the second element is true if it is getable. Attempts to
get a value from an inaccessible property and to set a value to a
immutable property result in exceptions. aStub.getPropertyAttribute(
‘Activity’)[0] # true if setable aStub.getPropertyAttribute(
‘Activity’)[1] # true if getable

Getting LOGGER data

To get logged data from a LOGGERSTUB, use getData() method.

getData() method has three forms according to requested range and time
resolution of the data:

	getData()

Get the whole data.

	getData(starttime [, endtime])

Get a slice of the data from starttime to endtime. If
endtime is omitted, the slice includes the tail of the data.

	getData(starttime, endtime, interval)

Get a slice of the data from starttime to endtime. This omits
data points if a time interval between two datapoints is smaller than
interval. This is not suitable for scientific data analysis, but
optimized for speed.

getData() method returns a rank-2 (matrix) ARRAY object of NUMERICPYTHON
module. The ARRAY has either one of the following forms: [[time value
average min max] [time value average min max] ...] or [[time value
] [time value] ...] The first five-tuple data format has five values
in a single datapoint:

	time

The time of the data point.

	value

The value at the time point.

	average

The time-weighted average of the value after the last data point to
the time of this data point.

	min

The minimum value after the last data point to the time of this data
point.

	max

The maximum value after the last data point to the time of this data
point.

The two-tuple data format has only time and value.

To know the start time, the end time, and the size of the logged data
before getting data, use getStartTime(), getEndTime(), and getSize()
methods of LOGGERSTUB. getSize() returns the number of data points
stored in the LOGGER.

Getting and changing logging interval

Logging interval of a LOGGER can be checked and changed by using
getMinimumInterval() and setMinimumInterval(interval) methods of
LOGGERSTUB. interval must be a zero or positive number in second. If
interval is a non-zero positive number, the LOGGER skips logging if
a simulation step occurs before interval second past the last
logging time point. If interval is zero, the LOGGER logs at every
simulation step.

An example usage of an ENTITYSTUB

The following example loads an EML file, and prints the value of ATP
VARIABLE in SYSTEM /CELL every 10 seconds. If the value is below
1000, it stops the simulation.

loadModel('simple.eml')

ATP = createEntityStub('Variable:/CELL:ATP')

while 1:

 ATPValue = ATP['Value']

 message('ATP value = %s' % ATPValue)

 if ATPValue <= 1000:
 break

 run(10)

message('Stopped at %s.' % getCurrentTime())

Handling Data Files

About ECD file

ECELL SE uses ECD (E-Cell Data) file format to store simulation results.
ECD is a plain text file, and easily handled by user-written and
third-party data processing and plotting software such as gnuplot.

An ECD file can store a matrix of floating-point numbers.

ecell.ECDDataFile class can be used to save and load ECD files. A
ECDDataFile object takes and returns a rank-2 ARRAY of NUMERICPYTHON. A
‘rank-2’ ARRAY is a matrix, which means that Numeric.rank(ARRAY) and
len(Numeric.shape(ARRAY)) returns ‘2‘.

Importing ECDDataFile class

To import the ECDDataFile class, import the whole ecell module,

import ecell

or import ecell.ECDDataFile module selectively.

import ecell.ECDDataFile

Saving and loading data

To save data to an ECD file, say, datafile.ecd, instantiate an
ECDDataFile object and use save() method. import ecell aDataFile =
ecell.ECDDataFile(DATA) aDataFile.save(‘datafile.ecd’) here DATA
is a rank-2 ARRAY of NUMERICPYTHON or an equivalent object. The data can
also be set by using setData() method after the instantiation. If the
data is already set, it is replaced. aDataFile.setData(DATA)

Loading the ECD file is also straightforward. aDataFile =
ecell.ECDDataFile() aDataFile.load(‘datafile.ecd’) DATA =
aDataFile.getData() The getData() method extracts the data from the
ECDDataFile object as an ARRAY.

ECD header information

In addition to the data itself, an ECD file can hold some information in
its header.

	Data name

The name of data. Setting a FullPN may be a good idea. Use
setDataName(name) and getDataName() methods to set and get this
field.

	Label

This field is used to name axes of the data. Use setLabel(labels
) and getLabel() methods. These methods takes and returns a PYTHON
TUPLE, and stored in the file as a space-separated list. The default
value of this field is: ('t', 'value', 'avg', 'min', 'max').

	Note

This is a free-format field. This can be a multi-line or a
single-line string. Use setNote(note) and getNote().

The header information is stored in the file like this.

#DATA:
#SIZE: 5 1010
#LABEL: t value avg min max
#NOTE:
#
#----------------------
0 0.1 0.1 0.1 0.1
...

Each line of the header is headed by a sharp (#) character. The
'#SIZE:' line is automatically set when saved to show size of the
data. This field is ignored in loading. The header ends with
'#----...'.

Using ECD outside ECELL SE

For most cases NUMERICPYTHON will offer any necessary functionality for
scientific data processing. However, using some external software can
enhance the usability.

ECD files can be used as input to any software which supports white
space-separated text format, and treats lines with heading sharps (#) as
comments.

GNU gnuplot is a scientific presentation-quality plotting software with
a sophisticated interactive command system. To plot an ECD file from
gnuplot, just use plot command. For example, this draws a time-value
2D-graph: gnuplot> ``\ ``plot 'datafile.ecd' with lines Use
using modifier to specify which column to use for the plotting. The
following example makes a time-average 2D-plot.
gnuplot> ``\ ``plot 'datafile.ecd' using 1:3 with lines

Another OpenSource software useful for data processing is GNU Octave.
Loading an ECD from Octave is also simplest. octave:1>
load datafile.ecd Now the data is stored in a matrix variable with
the same name as the file without the extension (datafile).
octave:2> ``\ ``mean(datafile) ``ans =

5.0663 51.7158 51.7158 51.2396 52.2386``

Binary format

Currently loading and saving of the binary file format is not supported.
However, Numeric Python has an efficient, platform-dependent way of
exporting and importing ARRAY data. See the Numeric Python manual.

Manipulating Model Files

This section describes how to create, modify, and read EML files with
the EML module of the ECELL PYTHON library.

Importing EML module

To import the EML module, just import ecell module.

import ecell

And ecell.Eml class is made available.

Other Methods

Getting version numbers

getLibECSVersion() method of ecell.ecs module gives the version of the
C++ backend library (libecs) as a string. getLibECSVersionInfo() method
of the module gives the version as a PYTHON TUPLE. The TUPLE contains
three numbers in this order: (MAJOR_VERSION, MINOR_VERSION,
MICRO_VERSION)

DM loading-related methods

The search path of DM files can be specified and retrieved by using
setDMSearchPath() and getDMSearchPath() methods. These methods gets and
returns a colon (:) separated list of directory names. The search path
can also be specified by using ECELL3_DM_PATH environment variable.
See the previous section for more about DMsearch path.

A list of built-in and already loaded DM classes can be gotten with
getDMInfo() method of ecell.ecs.Simulator class. The SIMULATOR instance
is available to SESSION as theSimulator variable. The method returns
a nested PYTHON TUPLE in the form of ((TYPE1, CLASSNAME1, PATH1), (
TYPE2, CLASSNAME2, PATH2), ...). TYPE is one of 'Process',
'Variable', 'System', or 'Stepper'. CLASSNAME is the class
name of the DM. PATH is the directory from which the DM is loaded. PATH
is an empty string ('') if it is a built-in class.

Advanced Topics

How ECELL3-SESSION runs

ECELL3-SESSION command runs on ECELL3-PYTHON interpreter command.
ECELL3-PYTHON command is a thin wrapper to the PYTHON interpreter.
ECELL3-PYTHON command simply invokes a PYTHON interpreter command
specified at compile time. Before executing PYTHON, ECELL3-PYTHON sets
some environment variables to ensure that it can find necessary ECELL
PYTHON extension modules and the Standard DM Library. After processing
the commandline options, ECELL3-SESSION command creates an
ecell.ecs.Simulator object, and then instantiate a ecell.Session object
for the simulator object.

Thus basically ECELL3-PYTHON is just a PYTHON interpreter, and frontend
components of ECELL SE run on this command. To use the ECELL Python
Library from ECELL3-PYTHON command, use

import ecell

statement from the prompt: $ ``\ ``ecell3-python
Python 2.2.2 (#1, Feb 24 2003, 19:13:11)
[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> ``\ ``import ecell ``>>> `` or, (on UNIX-like systems) execute a
file starting with:

#!/usr/bin/env ecell3-python
import ecell
[...]

Getting information about execution environment

To get the current configuration of ECELL3-PYTHON command, invoke
ECELL3-PYTHON command with a -h option. This will print values of
some variables as well as usage of the command.
$ ``\ ``ecell3-python -h ``[...]

Configurations:

PACKAGE = ecell
VERSION = 3.2.0
PYTHON = /usr/bin/python
PYTHONPATH = /usr/lib/python2.2/site-packages:
DEBUGGER = gdb
LD_LIBRARY_PATH = /usr/lib:
prefix = /usr
pythondir = /usr/lib/python2.2/site-packages
ECELL3_DM_PATH =

[...]
`` The ‘PYTHON =‘ line gives the path of the PYTHON interpreter to
be used.

Debugging

To invoke ECELL3-PYTHON command in debugging mode, set ECELL_DEBUG
environment variable. This runs the command on a debugger software. If
found, GNU gdb is used as the debugger. ECELL_DEBUG can be used for any
commands which run on ECELL3-PYTHON, including ECELL3-SESSION and
GECELL. For example, to run ECELL3-SESSION in debug mode on the shell
prompt: $ ``\ ``ECELL_DEBUG=1 ecell3-session -f foo.eml
gdb --command=/tmp/ecell3.0mlQyE /usr/bin/python
GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)
Copyright 2003 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu"...
[New Thread 1074178112 (LWP 7327)]
ecell3-session [E-Cell SE Version 3.2.0, on Python Version 2.2.2]
Copyright (C) 1996-2014 Keio University.
Send feedback to Koichi Takahashi <shafi@e-cell.org>
<foo.eml, t=0>>> ``\ `` Program received signal SIGINT, Interrupt.
[Switching to Thread 1074178112 (LWP 7327)]
0xffffe002 in ?? () (gdb) It automatically runs the program with
the commandline options with ‘--command=‘ option of gdb. The gdb
prompt appears when the program crashes or interrupted by the user by
pressing Ctrl C.

ECELL_DEBUG runs gdb, which is operates at the level of C++ code. For
debugging of PYTHON layer scripts, see PYTHON Library Reference Manual
for Python Debugger.

Profiling

It is possible to run ECELL3-PYTHON command in profiling mode, if the
operating system has GNU sprof command, and its C library supports
LD_PROFILE environmental variable. Currently it only supports
per-shared object profiling. (See GNU C Library Reference Manual)

To run ECELL3-PYTHON in profiling mode, set ECELL_PROFILE environment
variable to SONAME of the shared object. SONAME of a shared object
file can be found by using objdump command, with, for example, -p
option.

For example, the following commandline takes a performance profile of
Libecs: $ ``\ ``ECELL_PROFILE=libecs.so.2 ecell3-session [...] After
running, it creates a profiling data file with a filename
SONAME.profile in the current directory. In this case, it is
libecs.so.2.profile. The binary profiling data can be converted to a
text format by using sprof command. For example:
$ ``\ ``sprof -p libecs.so.2 libecs.so.2.profile

ECELL Python Library API

This section provides a list of some commonly used classes in ECELL
Python library and their APIs.

SESSION Class API

Methods of SESSION class has the following five groups.

	Session methods

	Simulation methods

	Stepper methods

	Entity methods

	Logger methods

SESSION-CLASS-API
OBJECTSTUB Classes API
———————-

There are three subclasses of OBJECTSTUB

	ENTITYSTUB

	STEPPERSTUB

	LOGGERSTUB

Some methods are common to these subclasses.

OBJECTSTUBS-API
ECDDataFile Class API
———————

ECDDataFile class has the following set of methods.

ECDDATAFILE-API

 Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecell3 3.2.3pre2 documentation

Creating New Object Classes

This section describes how to define your own object classes for use in
the simulation.

About Dynamic Modules

Dynamic Module (DM) is a file containing an object class, especially C++
class, which can be loaded and instantiated by the application. APP uses
this mechanism to provide users a way of defining and adding new classes
to appear in simulation models without recompiling the whole system.
Because the classes are defined in forms of native codes, this is the
most efficient way of adding a new code or object class in terms of
space and speed.

In APP, subclasses of PROCESS, VARIABLE, SYSTEM and STEPPER classes can
be dynamically loaded by the system.

In addition to standard DMs distributed with APP, user-defined DM files
can be created from C++ source code files (‘.cpp’ files) with the
ecell3-dmc command. The compiled files usually take a form of shared
library (‘.so’) files.

Defining a new class

A new object class can be defined by writing a C++ source code file with
some special usage of C++ macros.

Here is a boilarplate template of a DM file, with which you should feel
familiar if you have a C++ experience. Replace DMTYPE,
CLASSNAME, and BASECLASS according to your case.

#include <libecs/libecs.hpp>
#include <libecs/.hpp>

USE_LIBECS;

LIBECS_DM_CLASS(,)
{
public:
 LIBECS_DM_OBJECT(,)
 {
 // (Property definition of this class comes here.)
 }

 () {}// A constructor without an argument
 () {}// A destructor
};

LIBECS_DM_INIT(,);

DMTYPE, CLASSNAME and BASECLASS

First of all you have to decide basic attributes of the class you are
going to define; such as a DM type (PROCESS, VARIABLE, SYSTEM, or
STEPPER), a class name, and a base class.

	DMTYPE

DMTYPE is one of DM base classes defined in APP PROCESS, STEPPER,
VARIABLE, and SYSTEM.

	CLASSNAME

CLASSNAME is a name of the object class.

This must be a valid C++ class name, and should end with the
DMTYPE name. For example, if you are going to define a new
PROCESS class and want to name it Foo, the class name may look like
FooProcess.

	BASECLASS

The class your class inherits from.

	This may or may not be the same as the ``DMTYPE

	``, depending on whether it is a direct descendant of the DM base

class.

Filename

The name of the source file must be the same as the CLASSNAME with a
trailing ‘.cpp’ suffix. For example, if the CLASSNAME is FooProcess,
the file name must be FooProcess.cpp.

The source code can be divided into header and source files (such as
FooProcess.hpp and FooProcess.cpp), but at least the
LIBECS_DM_INIT macro must be placed in the source file of the class
(FooProcess.cpp).

Include Files

At least the libecs header file (libecs/libecs.hpp) and a header
file of the base class (such as libecs/.hpp) must be included in the
head of the file.

DM Macros

You may notice that the template makes use of some special macros:
USE_LIBECS, LIBECS_DM_CLASS, LIBECS_DM_OBJECT, and
LIBECS_DM_INIT.

USE_LIBECS declares use of libecs library, which is the core library
of APP, in this file after the line.

LIBECS_DM_CLASS

	``LIBECS_DM_OBJECT(,

)`` should be placed on the top of the class definition part

(immediately after ‘{‘ of the class). This macro declares that this is a
DM class. This macro makes it dynamically instantiable, and
automatically defines getClassName() method. Note that this macro
specifies public: field inside, and thus anything comes after this is
placed in public. For clarity it is a good idea to always write public:
explicitly after this macro.

LIBECS_DM_OBJECT(DMTYPE, CLASSNAME)
 public:

	``LIBECS_DM_INIT(,

)`` exports the class CLASSNAME as a DM class of type

DMTYPE. This must come after the definition (not just a declaration)
of the class to be exported with a LIBECS_DM_OBJECT call.

Constructor And Destructor

DM objects are always instantiated by calling the constructor with no
argument. The destructor is defined virtual in the base class.

Types And Declarations

Basic types

The following four basic types are available to be used in your code if
you included libecs/libecs.hpp header file and called the
USE_LIBECS macro.

	Real

A real number. Usually implemented as a double precision floating
point number. It is a 64-bit float on Linux/IA32/gcc platform.

	Integer

A signed integer number. This is a 64-bit long int on
Linux/IA32/gcc.

	UnsignedInteger

An unsigned integer number. This is a 64-bit unsigned long int on
Linux/IA32/gcc.

	STRING

A string equivalent to std::string class of the C++ standard library.

	POLYMORPH

POLYMORPH is a sort of universal type (actually a class) which can
become and *be made from* any of Real, Integer,
String, and PolymorphVector, which is a mixed list of these
three types of objects. See the next section for details.

These types are recommended to be used over other C++ standard types
such as double, int and char*.

Pointer and reference types

For each types, the following typedefs are available.

	TYPEPtr

Pointer type. (== TYPE*)

	TYPECptr

Const pointer type. (== const TYPE*)

	TYPERef

Reference type. (== TYPE&)

	TYPECref

Const reference type. (== const TYPE&)

For example, RealCref is equivalent to write const Real&. Using
these typedefs is recommended.

To declare a new type, use DECLARE_TYPE macro. For example,

DECLARE_TYPE(double, Real);

	is called inside the system so that RealCref can be used as ``const

	double&``.

Similary, DECLARE_CLASS can be used to enable the typedefs for a class.
Example:

DECLARE_CLASS(Process);

enables ProcessCref ProcessPtr etc.. Most classes defined in
libecs have these typedefs.

Limits and other attributes of types

To get limits and precisions of these numeric types, use
std::numeric_limits<> template class in the C++ standard library. For
instance, to get a maximum value that can be represented by the Real
type, use the template class like this:

#include <limits>
numeric_limits<Real>::max();

See the C++ standard library reference manual for more.

Polymorph class

A POLYMORPH object can be constructed from and converted to any of
Real, Integer, String, types and POLYMORPHVECTOR class.

Construct a Polymorph

To construct a POLYMORPH object, simply call a constructor with a value:

Polymorph anIntegerPolymorph(1);
Polymorph aRealPolymorph(3.1);
Polymorph aStringPolymorph("2.13e2");

A POLYMORPH object can be constructed (or copied) from a POLYMORPH:

Polymorph aRealPolymorph2(aRealPolymorph);

Getting a value of a Polymorph

The value of the POLYMORPH objects can be retrieved in any type by using
as<>() template method.

anIntegerPolymorph.as<Real>(); // == 1.0
aRealPolymorph.as<String>(); // == "3.1"
aStringPolymorph.as<Integer>(); // == 213

Note

If an overflow occurs when converting a very big ``Real`` value to
``Integer``, a ValueError exception?? is thrown. (NOT IMPLEMENTED
YET)

Examining and changing the type of Polymorph

getType(), changeType()

PolymorphVector

POLYMORPHVECTOR is a list of POLYMORPH objects.

Other C++ statements

The only limitation is the DM_INIT macro, which exports a class as a
DM class, can appear only once in a compilation unit which forms a
single shared library file.

Except for that, there is no limitation as far as the C++ compiler
understands it. There can be any C++ statements inside and outside of
the class definition including; other class definitions, nested classes,
typedefs, static functions, namespaces, and even template<>.

Be careful, however, about namespace corruptions. You may want to use
private C++ namespaces and static functiont when a class or a function
declared outside the DM class is needed.

PropertySlot

What is PropertySlot

PROPERTYSLOT is a pair of methods to access (get) and mutate (set) an
object property, associated with the name of the property. Values of
the object property can either be stored in a member variable of the
object, or dynamically created when the methods are called.

All of the four DM base classes, PROCESS, VARIABLE, SYSTEM and STEPPER
can have a set of PROPERTYSLOTs, or object properties. In other words,
these classes inherit PROPERTYINTERFACE common base class.

What is PropertySlot for?

PROPERTYSLOTs can be used from model files (such as EM files) as a means
of giving parameter values to each objects in the simulation model (such
as ENTITY and STEPPER objects). It can also be ways of dynamic
communications between objects during the simulation.

Type of PropertySlot

A type of a PROPERTYSLOT is any one of these four types:

	Real

	Integer

	String

	Polymorph

How to define a PropertySlot

To define a PROPERTYSLOT on an object class, you have to:

	Define set and/or get method(s).

	If necessary, define a member variable to store the property value.

	Register the method(s) as a PROPERTYSLOT.

Set method and get method

A PROPERTYSLOT is a pair of object methods, set method and get
method, associated with a property name. Either one of the methods can
be ommited. If there is a set method defined for a PROPERTYSLOT, the
PROPERTYSLOT is said to be setable. If there is a get method, it is
getable.

A set method must have the following signature to be recognized by the
system.

void CLASS::* (const T&)

And a get method must look like this:

const T CLASS::* (void) const

where T is a property type and CLASS is the object class that
the PROPERTYSLOT belongs to.

Don’t worry, you don’t need to memorize these prototypes. The following
four macoros can be used to declare and define set/get methods of a
specific type and a property name.

	SET_METHOD(,)

	Expansion:

void set(const &value)

	Usage: SET_METHOD macro is used to declare or define a
property set method, of which the property type is TYPE and
the property name is NAME, in a class definition. The given
property value is available as the value argument variable.

	Example:

This code:

class FooProcess
{
 SET_METHOD(Real, Flux)
 {
 theFlux = value;
 }

 Real theFlux;
};

will expand to the following C++ program.

class FooProcess
{
 void setFlux(const Real& value)
 {
 theFlux = value;
 }

 Real theFlux;
};

In this example, the given property value is stored in the member
variable theFlux.

	GET_METHOD(,)

	Expansion:

const get() const

	Usage: GET_METHOD macro is used to declare or define a
property get method, of which the property type is TYPE and
the property name is NAME, in a class definition. Definition
of the method must return the value of the property as a TYPE
object.

	Example:

This code:

class FooProcess
{
 GET_METHOD(Real, Flux)
 {
 return theFlux;
 }

 Real theFlux;
};

will expand to the following C++ program.

class FooProcess
{
 const Real getFlux() const
 {
 return theFlux;
 }

 Real theFlux;
};

	SET_METHOD_DEF(, ,)

	Expansion:

void ::set(const &value)

	Usage: SET_METHOD_DEF macro is used to define a property set
method outside class scope.

	Example:

SET_METHOD_DEF macro is usually used in conjunction with
SET_METHOD macro. For instance, the following code declares a
property setter method with SET_METHOD in the class
definition, and later defines the actual body of the method using
SET_METHOD_DEF.

class FooProcess
{
 virtual SET_METHOD(Real, Flux);

 Real theFlux;
};

SET_METHOD_DEF(Real, Flux, FooProcess)
{
 theFlux = value;
}

The definition part will expand to the following C++ program.

void FooProcess::setFlux(const Real& value)
{
 theFlux = value;
}

	GET_METHOD_DEF(, ,)

	Expansion:

const ::get() const

	Usage: GET_METHOD_DEF macro is used to define a property get
method outside class scope.

	Example: See the example of SET_METHOD_DEF above.

If the property is both setable and getable, and is simply stored in a
member variable, the following macro can be used.

SIMPLE_SET_GET_METHOD(,)

This assumes there is a variable with the same name as the property name
(NAME), and expands to a code that is equivalent to:

SET_METHOD(,)
{
 = value;
}

GET_METHOD(,)
{
 return ;
}

Registering PropertySlots

To register a PROPERTYSLOT on a class, one of these macros in the
LIBECS_DM_OBJECT macro of the target class:

	PROPERTYSLOT_SET_GET(,)

Use this if the property is both setable and getable, which means
that the class defines both set method and get method.

For example, to define a property ‘Flux’ of type Real on the
FooProcess class, write like this in the public area of the class
definition:

public:

 LIBECS_DM_OBJECT(,)
 {
 PROPERTYSLOT_SET_GET(,);
 }

This registers these methods:

void FooProcess::setFlux(const Real&);

and

const Real FooProcess::getFlux() const;

as the set and get methods of ‘Flux’ property of the class
FooProcess, respectively. Signatures of the methods must match with
the prototypes defined in the previous section. LIBECS_DM_OBJECT
can have any number of properties. It can also be empty.

	PROPERTYSLOT_SET(,)

This is almost the same as PROPERTYSLOT_SET_GET, but this does
not register get method. Use this if only a set method is available.

	PROPERTYSLOT_GET(,)

This is almost the same as PROPERTYSLOT_SET_GET, but this does
not register set method. Use this if only a get method is available.

	PROPERTYSLOT(, , ,)

If the name of either get or set method is different from the default
format (set``NAME``() or getNAME()), then use this macro
with explicitly specifying the pointers to the methods.

For example, the following use of the macro registers setFlux2() and
anotherGetMethod() methods of Flux property of the class FooProcess:

PROPERTYSLOT(Flux, Real,
 &FooProcess::setFlux2,
 &FooProcess::anotherGetMethod);

If more than one PROPERTYSLOTs with the same name are created on an
object, the last is taken.

Load / save methods

In addition to set and get methods, load and save methods can be
defined. Load methods are called when the model is loaded from the model
file. Similarly, save methods are called when the state of the model is
saved to a file by saveModel() method of the simulator.

Unless otherwise specified, load and save methods default to set and get
methods. This default definition can be changed by using the following
some macros.

	PROPERTYSLOT_LOAD_SAVE(, , , , ,)

This macros is the most generic way to set the property methods; all
of set method, get method, load method ans save method can be
specified independently. If the LOAD_METHOD is NOMETHOD, it
is said to be not loadable, and it is not savable if
SAVE_METHOD is NOMETHOD.

	PROPERTYSLOT_NO_LOAD_SAVE(, , ,)

Usage of this macro is the same as PROPERTYSLOT in the previous
section, but this sets both LOAD_METHOD and SAVE_METHOD to
NOMETHOD.

That is, this macro is equivalent to writing:

	PROPERTYSLOT_SET_GET_NO_LOAD_SAVE(, , ,)

PROPERTYSLOT_SET_NO_LOAD_SAVE(, ,)

PROPERTYSLOT_GET_NO_LOAD_SAVE(, ,)

Usage of these macros are the same as: PROPERTYSLOT_SET_GET,
PROPERTYSLOT_SET, and PROPERTYSLOT_GET, except that load and
save methods are not set instead of default to set and get methods.

Inheriting properties of base class

In most cases you may also want to use properties of base class. To
inherit the baseclass properties, use INHERIT_PROPERTIES()
macro. This macro is usually placed before any property
definition macros (such as PROPERTY_SET_GET()).

LIBECS_DM_OBJECT(,)
{
 INHERIT_PROPERTIES();

 PROPERTYSLOT_SET_GET(,);
}

Here PROPERTY_BASECLASS is usually the same as BASECLASS. An
exception is when the BASECLASS does not make use of
LIBECS_DM_OBJECT() macro. In this case, choose the nearest baseclass
in the class hierarachy that uses LIBECS_DM_OBJECT() for
PROPERTY_BASECLASS.

Using PropertySlots In Simulation

(1) Static direct access (using native C++ method) bypassing the
PROPERTYSLOT, (2) dynamically-bound access via a PROPERTYSLOT object,
(3) dynamically-bound access via PROPERTYINTERFACE.

Defining a new Process class

To define a new PROCESS class, at least the following two methods need
to be defined.

	initialize()

	fire()

initialize() is called when the simulation state needs to be reset. Note
that reset can happen anytime during the session, not just at the
beginning; especially when the reintegration of the state is requested.
fire() is called when the reaction takes place. You have to update the
VARIABLEs referred to by your PROCESS according to VARIABLEREFERENCE.

The PROCESS’s VARIABLEREFERENCEs are stored in
theVariableReferenceVector member variable, sorted by coefficient.
Hence references that have negative coefficients are followed by those
of zero coefficients, and so by those of positive coefficients. You can
get the offset from which the “zero” or positive references start
through getZeroVariableReferenceOffset() or
getPositiveVariableReferenceOffset(). If you want to look up for a
specific VARIABLEREFERENCE by name, use getVariableReference().

#include <libecs.hpp>
#include <Process.hpp>

USE_LIBECS;

LIBECS_DM_CLASS(SimpleProcess, Process)
{
public:
 LIBECS_DM_OBJECT(SimpleFluxProcess, Process)
 {
 PROPERTYSLOT_SET_GET(Real, k);
 }

 SimpleProcess(): k(0.0)
 {
 }

 SIMPLE_SET_GET_METHOD(Real, k);

 virtual void initialize()
 {
 Process::initialize();
 S0 = getVariableReference("S0");
 }

 virtual void fire()
 {
 // concentration gets reverted to the number of molecules
 // according to the volume of the System where the Process belongs.
 setFlux(k * S0.getMolarConc() * getSuperSystem()->getSize() * N_A);
 }

protected:
 Real k;
 VariableReference const& S0;
};

LIBECS_DM_INIT(SimpleProcess, Process);

Defining a new Stepper class

Defining a new Variable class

Defining a new System class

 Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecell3 3.2.3pre2 documentation

Standard Dynamic Module Library

This chapter overviews:

An incomplete list of classes available as the Standard Dynamic Module
Library, and,
Some usage the classes in the Standard Dynamic Module Library.
This chapter briefly describes the Standard Dynamic Module Library
distributed with APP. If the system is installed correctly, the classes
provided by the library can be used without any special procedure.

This chapter is not meant to be a complete reference. To know more about
the classes defined in the library, see the E-Cell3 Standard Dynamic
Module Library Reference Manual (under preparation).

Steppers

There are three direct sub-classes of STEPPER: DifferentialStepper,
DiscreteEventStepper, DiscreteTimeStepper

DifferentialSteppers

General-purpose DifferentialStepper classes

The following STEPPER classes implement general-purpose ordinary
differential equation solvers. Basically these classes must work well
with any simple continuous PROCESS classes.

	ODE45Stepper

This STEPPER implements Dormand-Prince 5(4)7M algorithm for ODE
systems.

In most cases this STEPPER is the best general purpose solver for ODE
models.

	ODE23Stepper

This STEPPER implements Fehlberg 2(3) algorithm for ODE systems.

Try this STEPPER if other part of the model has smaller timescales.
This STEPPER can be used for a moderately stiff systems of
differential equations.

	FixedODE1Stepper

A DifferentialStepper without adaptive stepsizing mechanism. The
solution of this STEPPER is first order.

This stepper calls process() method of each PROCESS just once in a
single step.

Although this STEPPER is not suitable for high-accuracy solution of
smooth continuous systems of differential equations, its simplicity
of the algorithm is sometimes useful.

S-System and GMA Steppers

FIXME: need description here.

DiscreteEventSteppers

	DiscreteEventStepper

This STEPPER is used to conduct discrete event simulations. This
STEPPER should be used in combination with subclasses of
DiscreteEventProcess.

This STEPPER uses its PROCESS objects as event generators. The
procedure of this STEPPER for initialize() method is like this:

	updateStepInterval() method of its all DiscreteEventProcess
objects.

	Find a PROCESS with the least scheduled time (top process). The
scheduled time is calculated as: (current time) + (StepInterval
of the process).

	Reschedule itself to the scheduled time of the top process.

step() method of this STEPPER is as follows:

	Call process() method of the current top process.

	Calls updateStepInterval() method of the top process and all
dependent processes of the top process, and update scheduled
times for those processes to find the new top process.

	Lastly the STEPPER reschedule itself to the scheduled time of the
new top process.

The procedure for interrupt() method of this class is the same as
that for initialize(). FIXME: need to explain about TimeScale
property.

	NRStepper

This is an alias to the DiscreteEventStepper. This class can be used
as an implementation of Gillespie-Gibson algorithm.

To conduct the Gillespie-Gibson simulation, use this class of STEPPER
in combination with GillespieProcess class. GillespieProcess is a
subclass of DiscreteEventProcess.

DiscreteTimeStepper

	DiscreteTimeStepper

This STEPPER steps with a fixed interval. For example, StepInterval
property of this STEPPER is set to 0.1, this STEPPER steps every
0.1 seconds.

When this STEPPER steps, it calls process() of all of its PROCESS
instances. To change this behavior, create a subclass.

This STEPPER ignores incoming interruptions from other STEPPERs.

PassiveStepper

	PassiveStepper

This STEPPER never steps spontaneously (step interval = infinity).
Instead, this STEPPER steps upon interruption. In other words, this
STEPPER steps everytime immediately after a dependent STEPPER steps.

When this STEPPER steps, it calls process() of all of its PROCESS
instances. To change this behavior, create a subclass.

Process classes

Continuous Process classes

Differential equation-based Process classes

The following PROCESS classes are straightforward implementations of
differential equations, and can be used with the general-purpose
DifferentialSteppers such as ODE45Stepper, ODE23Stepper, and
FixedODE1Stepper.

In the current version, most of the classes represent certain reaction
rate equations. Of course it is not limited to chemical and biochemical
simulations.

	CatalyzedMassActionFluxProcess

	DecayFluxProcess

	IsoUniUniFluxProcess

	MassActionProcess

	MichaelisUniUniProcess

	MichaelisUniUniReversibleProcess

	OrderedBiBiFluxProcess

	OrderedBiUniFluxProcess

	OrderedUniBiFluxProcess

	PingPongBiBiFluxProcess

	RandomBiBiFluxProcess

	RandomBiUniFluxProcess

	RandomUniBiFluxProcess

Other continuous Process classes

	PythonFluxProcess

	SSystemProcess

Discrete Process classes

	GammaProcess

Under development.

	GillespieProcess

This PROCESS must be used with a Gillespie-type STEPPER, such as
NRStepper.

	RapidEquilibriumProcess

Other Process classes

	PythonProcess

Variable classes

	Variable

A standard class to represent a state variable.

 Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ecell3 3.2.3pre2 documentation

Simulation Mechanism of E-Cell

This chapter reveals how APP represents cell models internally, and what
happens when the simulation is executed inside the system.

 Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	ecell3 3.2.3pre2 documentation

Empy Module Manual

 empy

Summary

 A templating system for Python.

Overview

 EmPy is a system for embedding Python expressions and statements in template text; it
 takes an EmPy source file, processes it, and produces output. This is accomplished via
 expansions, which are special signals to the EmPy system and are set off by a special
 prefix (by default the at sign, @). EmPy can expand arbitrary Python expressions and
 statements in this way, as well as a variety of special forms. Textual data not explicitly
 delimited in this way is sent unaffected to the output, allowing Python to be used in
 effect as a markup language. Also supported are "hook" callbacks, recording and playback
 via diversions, and dynamic, chainable filters. The system is highly configurable via
 command line options and embedded commands.

 Expressions are embedded in text with the @(...) notation; variations include conditional
 expressions with @(...?...:...) and the ability to handle thrown exceptions with
 @(...$...). As a shortcut, simple variables and expressions can be abbreviated as
 @variable, @object.attribute, @function(arguments), @sequence [2][index]
 , and combinations. Full-fledged statements are embedded with @{...}. Forms of
 conditional, repeated, and recallable expansion are available via @[...]. A @ followed by
 a whitespace character (including a newline) expands to nothing, allowing string
 concatenations and line continuations. Comments are indicated with @# and consume the rest
 of the line, up to and including the trailing newline. @% indicate "significators," which
 are special forms of variable assignment intended to specify per-file identification
 information in a format which is easy to parse externally. Escape sequences analogous to
 those in C can be specified with @\..., and finally a @@ sequence expands to a single
 literal at sign.

Getting the software

 The current version of empy is 2.3.

 The latest version of the software is available in a tarball here: [3]
 http://www.alcyone.com/pyos/empy/empy-latest.tar.gz.

 The official URL for this Web site is [4]http://www.alcyone.com/pyos/empy/.

Requirements

 EmPy should work with any version of Python from 1.5.x onward. It has been tested with all
 major versions of CPython from 1.5 up, and Jython from 2.0 up. The included test script is
 intended to run on UNIX-like systems with a Bourne shell.

License

 This code is released under the [5]GPL.

Mailing lists

 There are two EmPy related mailing lists available. The first is a receive-only, very low
 volume list for important announcements (including releases). To subscribe, send an email
 to [6]empy-announce-list-subscribe@alcyone.com.

 The second is a general discussion list for topics related to EmPy, and is open for
 everyone to contribute; announcements related to EmPy will also be made on this list. The
 author of EmPy (and any future developers) will also be on the list, so it can be used not
 only to discuss EmPy features with other users, but also to ask questions of the
 author(s). To subscribe, send an email to [7]empy-list-subscribe@alcyone.com.

Basics

 EmPy is intended for embedding Python code in otherwise unprocessed text. Source files are
 processed, and the results are written to an output file. Normal text is sent to the
 output unchanged, but markups are processed, expanded to their results, and then written
 to the output file as strings (that is, with the str function, not repr). The act of
 processing EmPy source and handling markups is called "expansion."

 Code that is processed is executed exactly as if it were entered into the Python
 interpreter; that is, it is executed with the equivalent of eval (for expressions) and
 exec (for statements). For instance, inside an expression, abc represents the name abc,
 not the string "abc", just as it would in normal Python code.

 By default the embedding token prefix is the at sign (@), which appears neither in valid
 Python code nor commonly in English text; it can be overridden with the -p option (or with
 the empy.setPrefix function). The token prefix indicates to the EmPy interpreter that a
 special sequence follows and should be processed rather than sent to the output untouched
 (to indicate a literal at sign, it can be doubled as in @@).

 When the interpreter starts processing its target file, no modules are imported by
 default, save the empy pseudomodule (see below), which is placed in the globals; the empy
 pseuodmodule is associated with a particular interpreter; it is important that it not be
 removed from that interpreter's globals, nor that it be shared with other interpreters
 running concurrently. The globals are not cleared or reset in any way. It is perfectly
 legal to set variables or explicitly import modules and then use them in later markups,
 e.g., @{import time} ... @time.time(). Scoping rules are as in normal Python, although all
 defined variables and objects are taken to be in the global namespace.

 Activities you would like to be done before any processing of the main EmPy file can be
 specified with the -I, -D, -E, -F, and -P options. -I imports modules, -D executes a
 Python variable assignment, -E executes an arbitrary Python (not EmPy) statement, -F
 executes a Python (not EmPy) file, and -P processes an EmPy (not Python) file. These
 operations are done in the order they appear on the command line; any number of each
 (including, of course, zero) can be used.

Expansions

 The following markups are supported. For concreteness below, @ is taken for the sake of
 argument to be the prefix character, although this can be changed.

 @# COMMENT NEWLINE
 A comment. Comments, including the trailing newline, are stripped out completely.
 Comments should only be present outside of expansions. The comment itself is not
 processed in any way: It is completely discarded. This allows @# comments to be
 used to disable markups. Note: As special support for "bangpaths" in UNIX like
 operating systems, if the first line of a file (or indeed any context) begins with
 #!, and the interpreter has a processBangpaths option set to true (default), it is
 treated as a @# comment. A #! sequence appearing anywhere else will be handled
 literally and unaltered in the expansion. Example:

 @# This line is a comment.
 @# This will NOT be expanded: @x.

 @ WHITESPACE
 A @ followed by one whitespace character (a space, horizontal tab, vertical tab,
 carriage return, or newline) is expanded to nothing; it serves as a way to
 explicitly separate two elements which might otherwise be interpreted as being the
 same symbol (such as @name@ s to mean '@(name)s'; see below). Also, since a newline
 qualifies as whitespace here, the lone @ at the end of a line represents a line
 continuation, similar to the backslash in other languages. Coupled with statement
 expansion below, spurious newlines can be eliminated in statement expansions by use
 of the @{...}@ construct. Example:

 This will appear as one word: salt@ water.
 This is a line continuation; @
 this text will appear on the same line.

 @\ ESCAPE_CODE
 An escape code. Escape codes in EmPy are similar to C-style escape codes, although
 they all begin with the prefix character. Valid escape codes include:

 @\0
 NUL, null

 @\a
 BEL, bell

 @\b
 BS, backspace

 @\d
 three-digital decimal code DDD

 @\e
 ESC, escape

 @\f
 FF, form feed

 @\h
 DEL, delete

 @\n
 LF, linefeed character, newline

 @\oOOO
 three-digit octal code OOO

 @\qQQQQ
 four-digit quaternary code QQQQ

 @\r
 CR, carriage return

 @\s
 SP, space

 @\t
 HT, horizontal tab

 @\v
 VT, vertical tab

 @\xHH
 two-digit hexadecimal code HH

 @\z
 EOT, end of transmission

 @^X
 the control character ^X

 Unlike in C-style escape codes, escape codes taking some number of digits afterward
 always take the same number to prevent ambiguities. Furthermore, unknown escape
 codes are treated as parse errors to discourage potential subtle mistakes. Unlike
 in C, to represent an octal value, one must use @\o.... Example:

 This embeds a newline.@\nThis is on the following line.
 This beeps!@\a
 There is a tab here:@\tSee?
 This is the character with octal code 141: @\o141.

 @@
 A literal at sign (@). To embed two adjacent at signs, use @@@@, and so on. Any
 literal at sign that you wish to appear in your text must be written this way, so
 that it will not be processed by the system. Note: If a prefix other than @ has
 been chosen via the command line option, one expresses that literal prefix by
 doubling it, not by appending a @. Example:

 The prefix character is @@.
 To get the expansion of x you would write @@x.

 @), @], @}
 These expand to literal close parentheses, close brackets, and close braces,
 respectively; these are included for completeness and explicitness only. Example:

 This is a close parenthesis: @).

 @(EXPRESSION)
 Evaluate an expression, and replace the tokens with the string (via a call to str)
 representation evaluation of that expression. Whitespace immediately inside the
 parentheses is ignored; @(expression) is equivalent to @(expression). If the
 expression evaluates to None, nothing is expanded in its place; this allows
 function calls that depend on side effects (such as printing) to be called as
 expressions. (If you really do want a None to appear in the output, then use the
 Python string "None".) Example:

 2 + 2 is @(2 + 2).
 4 squared is @(4**2).
 The value of the variable x is @(x).
 This will be blank: @(None).

 @(TEST ? THEN (: ELSE)_opt ($ CATCH)_opt)
 A special form of expression evaluation representing conditional and protected
 evaluation. Evaluate the "test" expression; if it evaluates to true (in the
 Pythonic sense), then evaluate the "then" section as an expression and expand with
 the str of that result. If false, then the "else" section is evaluated and
 similarly expanded. The "else" section is optional and, if omitted, is equivalent
 to None (that is, no expansion will take place).

 If the "catch" section is present, then if any of the prior expressions raises an
 exception when evaluated, the expansion will be substituted with the evaluation of
 the catch expression. (If the "catch" expression itself raises, then that exception
 will be propagated normally.) The catch section is optional and, if omitted, is
 equivalent to None (that is, no expansion will take place). An exception (cough) to
 this is if one of these first expressions raises a SyntaxError; in that case the
 protected evaluation lets the error through without evaluating the "catch"
 expression. The intent of this construct is to catch runtime errors, and if there
 is actually a syntax error in the "try" code, that is a problem that should
 probably be diagnosed rather than hidden. Example:

 What is x? x is @(x ? "true" : "false").
 Pluralization: How many words? @x word@(x != 1 ? 's').
 The value of foo is @(foo $ "undefined").
 The square root of -1 is @(math.sqrt(-1) $ "not real").

 @ SIMPLE_EXPRESSION
 As a shortcut for the @(...) notation, the parentheses can be omitted if it is
 followed by a "simple expression." A simple expression consists of a name followed
 by a series of function applications, array subscriptions, or attribute
 resolutions, with no intervening whitespace. For example:

 + a name, possibly with qualifying attributes (e.g., @value, @os.environ).
 + a straightforward function call (e.g., @min(2, 3), @time.ctime()), with no space
 between the function name and the open parenthesis.
 + an array subscription (e.g., '@array[8][index]', '@os.environ[9][name]', with no
 space between the name and the open bracket.
 + any combination of the above (e.g., '@function(args).attr[10][sub].other[11][i]
 (foo)').

 In essence, simple expressions are expressions that can be written ambiguously from
 text, without intervening space. Note that trailing dots are not considered part of
 the expansion (e.g., @x. is equivalent to @(x)., not @(x.), which would be illegal
 anyway). Also, whitespace is allowed within parentheses or brackets since it is
 unambiguous , but not between identifiers and parentheses, brackets, or dots.
 Explicit @(...) notation can be used instead of the abbreviation when concatenation
 is what one really wants (e.g., @(word)s for simple pluralization of the contents
 of the variable word). As above, if the expression evaluates to the None object,
 nothing is expanded. Example:

 The value of x is @x.
 The ith value of a is @a[i].
 The result of calling f with q is @f(q).
 The attribute a of x is @x.a.
 The current time is @time.ctime(time.time()).
 The current year is @time.localtime(time.time())[0].
 These are the same: @min(2,3) and @min(2, 3).
 But these are not the same: @min(2, 3) vs. @min (2, 3).
 The plural of @name is @(name)s, or @name@ s.

 @` EXPRESSION `
 Evaluate a expression, and replace the tokens with the repr (instead of the str
 which is the default) of the evaluation of that expression. This expansion is
 primarily intended for debugging and is unlikely to be useful in actual practice.
 That is, a @`...` is identical to @(repr(...)). Example:

 The repr of the value of x is @`x`.
 This print the Python repr of a module: @`time`.
 This actually does print None: @`None`.

 @: EXPRESSION : DUMMY :
 Evaluate an expression and then expand to a @:, the original expression, a :, the
 evaluation of the expression, and then a :. The current contents of the dummy area
 are ignored in the new expansion. In this sense it is self-evaluating; the syntax
 is available for use in situations where the same text will be sent through the
 EmPy processor multiple times. Example:

 This construct allows self-evaluation:
 @:2 + 2:this will get replaced with 4:

 @[noop : IGNORED]
 The material contained within the substitution is completely ignored. The
 substiution does not expand to anything, and indeed expansion contained within the
 ignored block are not expanded. This is included simply for completeness, and can
 served as a block comment. Example:

 @[noop:
 All this stuff would appear here
 if it weren't for the noop.
 @{
 while 1:
 print "Testing"
 }@
]

 @[if EXPRESSION : CODE]
 Evaluate the Python test expression; if it evaluates to true, then expand the
 following code through the EmPy system (which can contain markups), otherwise,
 expand to nothing. Example:

 @[if x > 0:@x is positive.]
 @# If you want to embed unbalanced right brackets:
 @[if showPrompt:@\x5dINIT HELLO]

 @[while EXPRESSION : CODE]
 Evaluate the Python expression; if it evaluates to true, then expand the code and
 repeat; otherwise stop expanding. Example:

 @[while i < 10:@ i is @i.@\n]

 @[for NAME in EXPRESSION : CODE]
 Evaluate the Python expression and treat it as a sequence; iterate over the
 sequence, assigning each element to the provided name in the globals, and expanding
 the given code each time. Example:

 @[for i in range(5):@ The cube of @i is @(i**3).@\n]

 @[macro SIGNATURE : CODE]
 Define a "macro," which is a function-like object that causes an expansion whenever
 it is called. The signature defines the name of the function and its parameter
 list, if any -- just like normal Python functions, macro signatures can include
 optional arguments, keyword arguments, etc. When defined, calling the macro results
 in the given code to be expanded, with the function arguments involved as the
 locals dictionary in the expansion. Additionally, the doc string of the function
 object that is created corresponds to the expansion. Example:

 @[macro f(n):@ @[for i in range(n):@ @i**2 is @(i**2)@\n]]

 @{ STATEMENTS }
 Execute a (potentially compound) statement; statements have no return value, so the
 expansion is not replaced with anything. Multiple statements can either be
 separated on different lines, or with semicolons; indentation is significant, just
 as in normal Python code. Statements, however, can have side effects, including
 printing; output to sys.stdout (explicitly or via a print statement) is collected
 by the interpreter and sent to the output. The usual Python indentation rules must
 be followed, although if the statement consists of only one statement, leading and
 trailing whitespace is ignored (e.g., @{ print time.time() } is equivalent to
 @{print time.time()}). Example:

 @{x = 123}
 @{a = 1; b = 2}
 @{print time.time()}
 @# Note that extra newlines will appear above because of the
 @# newlines trailing the close braces. To suppress them
 @# use a @ before the newline:
 @{
 for i in range(10):
 print "i is %d" % i
 }@
 @{print "Welcome to EmPy."}@

 @% KEY (WHITESPACE VALUE)_opt NEWLINE
 Declare a significator. Significators consume the whole line (including the
 trailing newline), and consist of a key string containing no whitespace, and than
 optional value prefixed by whitespace. The key may not start with or contain
 internal whitespace, but the value may; preceding or following whitespace in the
 value is stripped. Significators are totally optional, and are intended to be used
 for easy external (that is, outside of EmPy) identification when used in large
 scale environments with many EmPy files to be processed. The purpose of
 significators is to provide identification information about each file in a
 special, easy-to-parse form so that external programs can process the significators
 and build databases, independently of EmPy. Inside of EmPy, when a significator is
 encountered, its key, value pair is translated into a simple assignment of the form
 __KEY__ = VALUE , where "__KEY__" is the key string with two underscores on either
 side and "VALUE" is a Python expression. Example:

 @%title "Nobody knows the trouble I've seen"
 @%keywords ['nobody', 'knows', 'trouble', 'seen']
 @%copyright [2000, 2001, 2002]

Substitutions

 Supported are conditional and repeated substitutions, which involve testing or iterating
 over Python expressions and then possibly expanding EmPy code. These different from normal
 Python if, for, and while statements since the result is an EmPy expansion, rather than
 the execution of a Python statement; the EmPy expansion may, of course, contain further
 expansions. This is useful for in-place conditional or repeated expansion of similar text;
 as with all expansions, markups contained within the EmPy code are processed. The simplest
 form would consist something like:
 @[if x != 0:x is @x]

 This will expand x is @x if x is greater than zero. Note that all characters, including
 whitespace and newlines, after the colon and before the close bracket are considered part
 of the code to be expanded; to put a space in there for readability, you can use the
 prefix and a whitespace character:
 @[if x != 0:@ x is @x]

 Iteration via while is also possible:
 @{i = 0}@[while i < 10:@ i is @i@\n@{i = i + 1}]

 This is a rather contrived example which iterates i from 0 to 9 and then prints "i is
 (value)" for each iteration.

 A more practical example can be demonstrated with the for notation:
 <table>@[for x in elements:@ <tr><td>@x</td></tr>]</table>

 This EmPy fragment would format the contents of elements into an HTML table, with one
 element per row.

 The macro substitution doesn't get replaced with anything, but instead defines a "macro,"
 or recallable expansion, which looks and behaves like a function. When called, it expands
 its contents. The arguments to the function -- which can be defined with optional,
 remaining, and keyword arguments, just like any Python function -- can be referenced in
 the expansion as local variables. For concreteness, the doc string of the macro function
 is the original expansion. An macro substitution of the form @[macro SIGNATURE:CODE] is
 equivalent to the following Python code:
 def SIGNATURE:
 repr(CODE) # so it is a doc string
 empy.string(repr(CODE), '<macro>', locals())

 This can be used to defer the expansion of something to a later time:
 @[macro header(title='None'):<head><title>@title</title></head>]

 Note that all text up to the trailing bracket is considered part of the EmPy code to be
 expanded. If one wishes a stray trailing brackets to appear in the code, one can use an
 escape code to indicate it, such as @\x5d. Matching open and close bracket pairs do not
 need to be escaped, for either bracket pairs in an expansion or even for further
 substitutions:
 @[if something:@ This is an unbalanced close bracket: @\x5d]
 @[if something:@ This is a balanced bracket pair: [word]]
 @[if something:@ @[if somethingElse:@ This is nested.]]

Significators

 Significators are intended to represent special assignment in a form that is easy to
 externally parse. For instance, if one has a system that contains many EmPy files, each of
 which has its own title, one could use a title significator in each file and use a simple
 regular expression to find this significator in each file and organize a database of the
 EmPy files to be built. This is an easier proposition than, for instance, attempting to
 grep for a normal Python assignment (inside a @{...} expansion) of the desired variable.

 Significators look like the following:
 @%KEY VALUE

 including the trailing newline, where "key" is a name and "value" is a Python expression,
 and are separated by any whitespace. This is equivalent to the following Python code:
 __KEY__ = VALUE

 That is to say, a significator key translates to a Python variable consisting of that key
 surrounded by double underscores on either side. The value may contain spaces, but the key
 may not. So:
 @%title "All Roads Lead to Rome"

 translates to the Python code:
 __title__ = "All Roads Lead to Rome"

 but obviously in a way that easier to detect externally than if this Python code were to
 appear somewhere in an expansion. Since significator keys are surrounded by double
 underscores, significator keys can be any sequence of alphanumeric and underscore
 characters; choosing 123 is perfectly valid for a significator (although straight), since
 it maps to the name __123__ which is a legal Python identifier.

 Note the value can be any Python expression. The value can be omitted; if missing, it is
 treated as None.

 Significators are completely optional; it is totally legal for a EmPy file or files to be
 processed without containing any significators.

 A regular expression string designed to match significators (with the default prefix) is
 available as empy.SIGNIFICATOR_RE_STRING, and also is a toplevel definition in the em
 module itself.

Diversions

 EmPy supports an extended form of m4-style diversions, which are a mechanism for deferring
 and recalling output on demand. Multiple "streams" of output can be diverted and
 undiverted in this manner. A diversion is identified with a name, which is any immutable
 object such an integer or string. When recalled, diverted code is not resent through the
 EmPy interpreter (although a filter could be set up to do this).

 By default, no diversions take place. When no diversion is in effect, processing output
 goes directly to the specified output file. This state can be explicitly requested at any
 time by calling the empy.stopDiverting function. It is always legal to call this function.

 When diverted, however, output goes to a deferred location which can then be recalled
 later. Output is diverted with the empy.startDiversion function, which takes an argument
 that is the name of the diversion. If there is no diversion by that name, a new diversion
 is created and output will be sent to that diversion; if the diversion already exists,
 output will be appended to that preexisting diversion.

 Output send to diversions can be recalled in two ways. The first is through the
 empy.playDiversion function, which takes the name of the diversion as an argument. This
 recalls the named diversion, sends it to the output, and then erases that diversion. A
 variant of this behavior is the empy.replayDiversion, which recalls the named diversion
 but does not eliminate it afterwards; empy.replayDiversion can be repeatedly called with
 the same diversion name, and will replay that diversion repeatedly. empy.createDiversion
 create a diversion without actually diverting to it, for cases where you want to make sure
 a diversion exists but do not yet want to send anything to it.

 The diversion object itself can be retrieved with empy.retrieveDiversion. Diversions act
 as writable file-objects, supporting the usual write, writelines, flush, and close
 methods. The data that has been diverted to them can be retrieved in one of two ways;
 either through the asString method, which returns the entire contents of the diversion as
 a single strong, or through the asFile method, which returns the contents of the diversion
 as a readable (not writable) file-like object.

 Diversions can also be explicitly deleted without recalling them with the
 empy.purgeDiversion function, which takes the desired diversion name as an argument.

 Additionally there are three functions which will apply the above operations to all
 existing diversions: empy.playAllDiversions, empy.replayAllDiversions, and
 empy.purgeAllDiversions. All three will do the equivalent of a empy.stopDiverting call
 before they do their thing.

 The name of the current diversion can be requested with the empy.getCurrentDiversion
 function; also, the names of all existing diversions (in sorted order) can be retrieved
 with empy.getAllDiversions.

 When all processing is finished, the equivalent of a call to empy.playAllDiversions is
 done.

Filters

 EmPy also supports dynamic filters. Filters are put in place right "before" the final
 output file, and so are only invoked after all other processing has taken place (including
 interpreting and diverting). Filters take input, remap it, and then send it to the output.

 The current filter can be retrieved with the empy.getFilter function. The filter can be
 cleared (reset to no filter) with empy.resetFilter and a special "null filter" which does
 not send any output at all can be installed with empy.nullFilter. A custom filter can be
 set with the empy.setFilter function; for convenience, specialized forms of filters
 preexist and can be accessed with shortcuts for the empy.setFilter argument:
 * None is a special filter meaning "no filter"; when installed, no filtering whatsoever
 will take place. empy.setFilter(None) is equivalent to empy.resetFilter().
 * 0 (or any other numeric constant equal to zero) is another special filter that
 represents the null filter; when installed, no output will ever be sent to the
 filter's sink.
 * A filter specified as a function (or lambda) is expected to take one string argument
 and return one string argument; this filter will execute the function on any input and
 use the return value as output.
 * A filter that is a string is a 256-character table is substituted with the result of a
 call to string.translate using that table.
 * A filter can be an instance of a subclass of empy.Filter. This is the most general
 form of filter. (In actuality, it can be any object that exhibits a Filter interface,
 which would include the normal file-like write, flush, and close methods, as well as
 next, attach, and detach methods for filter-specific behavior.)
 * Finally, the argument to empy.setFilter can be a Python list consisting of one or more
 of the above objects. In that case, those filters are chained together in the order
 they appear in the list. An empty list is the equivalent of 'None'; all filters will
 be uninstalled.

 Filters are, at their core, simply file-like objects (minimally supporting write, flush,
 and close methods that behave in the usual way) which, after performing whatever
 processing they need to do, send their work to the next file-like object or filter in
 line, called that filter's "sink." That is to say, filters can be "chained" together; the
 action of each filter takes place in sequence, with the output of one filter being the
 input of the next. Additionally, filters support a _flush method (note the leading
 underscore) which will always flush the filter's underlying sink; this method should be
 not overridden.

 Filters also support three additional methods, not part of the traditional file interface:
 attach, which takes as an argument a file-like object (perhaps another filter) and sets
 that as the filter's "sink" -- that is, the next filter/file-like object in line. detach
 (which takes no arguments) is another method which flushes the filter and removes its
 sink, leaving it isolated. Finally, next is an accessor method which returns the filter's
 sink -- or None, if the filter does not yet have a sink attached.

 To create your own filter, you can create an object which supports the above described
 interface, or simply derive from the empy.Filter class and override its write and possibly
 flush methods. You can chain filters together by passing them as elements in a list to the
 empy.setFilter function, or you can chain them together manually with the attach method:
 firstFilter.attach(secondFilter)
 empy.setFilter(firstFilter)

 or just let EmPy do the chaining for you:
 empy.setFilter([firstFilter, secondFilter])

 In either case, EmPy will walk the filter chain and find the end and then hook that into
 the appropriate interpreter stream; you need not do this manually.

 Subclasses of empy.Filter are already provided with the above null, function, and string
 functionality described above; they are NullFilter, FunctionFilter, and StringFilter,
 respectively. In addition, a filter which supports buffering, BufferedFilter, is provided.
 Several variants are included: SizeBufferedFilter, a filter which buffers into fixed-sized
 chunks, LineBufferedFilter, a filter which buffers by lines, and MaximallyBufferedFilter,
 a filter which completely buffers its input.

Hooks

 The EmPy system also allows for the usage of "hooks," which are callbacks that can be
 registered with an interpreter to get information on the current state of activity and act
 upon it.

 Hooks are associated with names, which are merely strings; these strings represent a state
 of the interpreter. Any number of hooks can be associated with a given name, and are
 registered with the empy.addHook function call. Hooks are callable objects which take two
 arguments: first, a reference to the interpreter that is running; and second, a dictionary
 that contains contextual information about the point at which the hook is invoked; the
 contents of this dictionary are dependent on the hook name.

 Hooks can perform any reasonable action, with one caveat: When hooks are invoked,
 sys.stdout may not be properly wrapped and so should be considered unusable. If one wishes
 to really write to the actually stdout stream (not the interpreter), use
 sys.__stdout__.write. If one wishes to send output to the interpreter, then use
 interpreter.write. Neither references to sys.stdout nor print statements should ever
 appear in a hook.

 The hooks associated with a given name can be retrieved with empy.getHooks. All hooks
 associated with a name can be cleared with empy.clearHooks, and all hooks associated with
 all names can be cleared with empy.clearAllHooks. A hook added with empy.addHook can be
 removed with empy.removeHook. Finally, hooks can be manually invoked via empy.invokeHook.

 The following hooks are supported; also listed in curly braces are the keys contained in
 the dictionary argument:

 at_shutdown
 The interpreter is shutting down.

 at_handle {meta}
 An exception is being handled; meta is the exception (an instance of MetaError).
 Note that this hook is invoked when the exception is handled by the EmPy system,
 not when it is thrown.

 before_include {name, file}
 An empy.include call is about to be processed; name is the context name of the
 inclusion and file is the actual file object associated with the include.

 after_include
 An empy.include was just completed.

 before_expand {string, locals}
 An empy.expand call is about to be processed. string is the actual data that is
 about to be processed; locals is the locals dictionary or None.

 after_expand
 An empy.expand was just completed.

 at_quote {string}
 An empy.quote call is about to be processed; string is the string to be quoted.

 at_escape {string}
 An empy.escape call is about to be processed; string is the string to be escaped.

 before_file {name, file}
 A file object is just about to be processed. name is the context name associated
 with the object and file is the file object itself.

 after_file
 A file object has just finished processing.

 before_string {name, string}
 A standalone string is just about to be processed. name is the context name
 associated with it and string is the string itself.

 after_string
 A standalone string has just finished being processed.

 at_parse {scanner}
 A parsing pass is just about to be performed. scanner is the scanner associated
 with the parsing pass.

 before_evaluate {expression, locals}
 A Python expression is just about to be evaluated. expression is the (string)
 expression, and locals is the locals dictionary or None.

 after_evaluate
 A Python expression was just evaluated.

 before_execute {statements, locals}
 A chunk of Python statements is just about to be evaluated. statements is the
 (string) statement block, and locals is the locals dictionary or None.

 before_single {source, locals}
 A single interactive source code fragment (just as in the Python interpreter) is
 about to be executed via Interpreter.single. source is the code (expression or
 statement) to execute, and locals is the locals directory or None.

 after_single
 A single has just taken place.

 before_substitute {substitution}
 A @[...] substitution is just about to be done. substitution is the substitution
 string itself.

 after_substitute
 A substitution just took place.

 before_significate {key, value}
 A significator is just about to be processed; key is the key and value is the
 value.

 after_significate
 A significator was just processed.

 As a practical example, this sample Python code would print a pound sign followed by the
 name of every file that is included with 'empy.include':
 def includeHook(interpreter, keywords):
 interpreter.write("# %s\n" % keywords['name'])
 empy.addHook('before_include', includeHook)

 Note that this snippet properly uses a call to interpreter.write instead of executing a
 print statement.

Data flow

 input -> interpreter -> diversions -> filters -> output

 Here, in summary, is how data flows through a working EmPy system:

 1. Input comes from a source, such an .em file on the command line, or via an
 empy.include statement.
 2. The interpreter processes this material as it comes in, expanding token sequences as
 it goes.
 3. After interpretation, data is then sent through the diversion layer, which may allow
 it directly through (if no diversion is in progress) or defer it temporarily.
 Diversions that are recalled initiate from this point.
 4. Any filters in place are then used to filter the data and produce filtered data as
 output.
 5. Finally, any material surviving this far is sent to the output stream. That stream is
 stdout by default, but can be changed with the -o or -a options, or may be fully
 buffered with the -B option (that is, the output file would not even be opened until
 the entire system is finished).

 Pseudomodule contents

 The empy pseudomodule (available only in an operating EmPy system) contains the following
 functions and objects (and their signatures, with a suffixed opt indicating an optional
 argument):

 First, basic identification:

 VERSION
 A constant variable which contains a string representation of the EmPy version.

 SIGNIFICATOR_RE_STRING
 A constant variable representing a regular expression string that can be used to
 find significators in EmPy code.

 interpreter
 The instance of the interpreter that is currently being used to perform execution.

 argv
 A list consisting of the name of the primary EmPy script and its command line
 arguments, in analogue to the sys.argv list.

 args
 A list of the command line arguments following the primary EmPy script; this is
 equivalent to empy.argv[1:].

 identify() -> string, integer
 Retrieve identification information about the current parsing context. Returns a
 2-tuple consisting of a filename and a line number; if the file is something other
 than from a physical file (e.g., an explicit expansion with empy.expand, a
 file-like object within Python, or via the -E or -F command line options), a string
 representation is presented surrounded by angle brackets. Note that the context
 only applies to the EmPy context, not the Python context.

 setName(name)
 Manually set the name of the current context.

 setLine(line)
 Manually set the line number of the current context; line must be a numeric value.
 Note that afterward the line number will increment by one for each newline that is
 encountered, as before.

 atExit(callable)
 Register a callable object (or function) taking no arguments which will be called
 at the end of a normal shutdown. Callable objects registered in this way are called
 in the reverse order in which they are added, so the first callable registered with
 empy.atExit is the last one to be called. Note that although the functionality is
 related to hooks, empy.atExit does no work via the hook mechanism, and you are
 guaranteed that the interpreter and stdout will be in a consistent state when the
 callable is invoked.

 Globals manipulation:

 getGlobals()
 Retrieve the globals dictionary for this interpreter. Unlike when calling globals()
 in Python, this dictionary can be manipulated and you can expect changes you make
 to it to be reflected in the interpreter that holds it.

 setGlobals(globals)
 Reseat the globals dictionary associated with this interpreter to the provided
 mapping type.

 updateGlobals(globals)
 Merge the given dictionary into this interpreter's globals.

 clearGlobals(globals_opt)
 Clear out the globals (restoring, of course, the empy pseudomodule). Optionally,
 instead of starting with a refresh dictionary, use the dictionary provided.

 Filter classes:

 Filter
 The base Filter class which can be derived from to make custom filters.

 NullFilter
 A null filter; all data sent to the filter is discarded.

 FunctionFilter
 A filter which uses a function taking a string and returning another to perform the
 filtering.

 StringFilter
 A filter which uses a 256-character string table to map any incoming character.

 BufferedFilter
 A filter which does not modify its input, but instead holds it until it is told to
 flush (via the filter's flush method). This also serves as the base class for the
 other buffered filters below.

 SizeBufferedFilter
 A filter which buffers into fixed-size chunks, with the possible exception of the
 last chunk. The buffer size is indicated as the sole argument to the constructor.

 LineBufferedFilter
 A filter which buffers into lines, with the possible exception of the last line
 (which may not end with a newline).

 MaximallyBufferedFilter
 A filter which does not flush any of its contents until it is closed. Note that
 since this filter ignores calls to its flush method, this means that installing
 this filter and then replacing it with another can result in loss of data.

 The following functions allow direct execution; optional locals arguments, if specified,
 are treated as the locals dictionary in evaluation and execution:

 evaluate(expression, locals_opt)
 Evaluate the given expression.

 execute(statements, locals_opt)
 Execute the given statement(s).

 single(source, locals_opt)
 Interpret the "single" source code, just as the Python interactive interpreter
 would.

 substitute(substitution, locals_opt)
 Perform the given substitution.

 significate(key, value_opt)
 Do a manual signification. If value is not specified, it is treated as None.

 The following functions relate to source manipulation:

 include(file_or_filename, locals_opt)
 Include another EmPy file, by processing it in place. The argument can either be a
 filename (which is then opened with open in text mode) or a file object, which is
 used as is. Once the included file is processed, processing of the current file
 continues. Includes can be nested. The call also takes an optional locals
 dictionary which will be passed into the evaluation function.

 expand(string, locals_opt) -> string
 Explicitly invoke the EmPy parsing system to process the given string and return
 its expansion. This allows multiple levels of expansion, e.g., @(empy.expand("@(2 +
 2)")). The call also takes an optional locals dictionary which will be passed into
 the evaluation function. This is necessary when text is being expanded inside a
 function definition and it is desired that the function arguments (or just plain
 local variables) are available to be referenced within the expansion.

 quote(string) -> string
 The inverse process of empy.expand, this will take a string and return a new string
 that, when expanded, would expand to the original string. In practice, this means
 that appearances of the prefix character are doubled, except when they appear
 inside a string literal.

 escape(string, more_opt) -> string
 Given a string, quote the nonprintable characters contained within it with EmPy
 escapes. The optional more argument specifies additional characters that should be
 escaped.

 flush()
 Do an explicit flush on the underlying stream.

 string(string, name_opt, locals_opt)
 Explicitly process a string-like object. This differs from empy.expand in that the
 string is directly processed into the EmPy system, rather than being evaluated in
 an isolated context and then returned as a string.

 Changing the behavior of the pseudomodule itself:

 flatten(keys_opt)
 Perform the equivalent of from empy import ... in code (which is not directly
 possible because empy is a pseudomodule). If keys is omitted, it is taken as being
 everything in the empy pseudomodule. Each of the elements of this pseudomodule is
 flattened into the globals namespace; after a call to empy.flatten, they can be
 referred to simple as globals, e.g., @divert(3) instead of @empy.divert(3). If any
 preexisting variables are bound to these names, they are silently overridden. Doing
 this is tantamount to declaring an from ... import ... which is often considered
 bad form in Python.

 Prefix-related functions:

 getPrefix() -> char
 Return the current prefix.

 setPrefix(char)
 Set a new prefix. Immediately after this call finishes, the prefix will be changed.
 Changing the prefix affects only the current interpreter; any other created
 interpreters are unaffected.

 Diversions:

 stopDiverting()
 Any diversions that are currently taking place are stopped; thereafter, output will
 go directly to the output file as normal. It is never illegal to call this
 function.

 createDiversion(name)
 Create a diversion, but do not begin diverting to it. This is the equivalent of
 starting a diversion and then immediately stopping diversion; it is used in cases
 where you want to make sure that a diversion will exist for future replaying but
 may be empty.

 startDiversion(name)
 Start diverting to the specified diversion name. If such a diversion does not
 already exist, it is created; if it does, then additional material will be appended
 to the preexisting diversions.

 playDiversion(name)
 Recall the specified diversion and then purge it. The provided diversion name must
 exist.

 replayDiversion(name)
 Recall the specified diversion without purging it. The provided diversion name must
 exist.

 purgeDiversion(name)
 Purge the specified diversion without recalling it. The provided diversion name
 must exist.

 playAllDiversions()
 Play (and purge) all existing diversions in the sorted order of their names. This
 call does an implicit empy.stopDiverting before executing.

 replayAllDiversions()
 Replay (without purging) all existing diversions in the sorted order of their
 names. This call does an implicit empy.stopDiverting before executing.

 purgeAllDiversions()
 Purge all existing diversions without recalling them. This call does an implicit
 empy.stopDiverting before executing.

 getCurrentDiversion() -> diversion
 Return the name of the current diversion.

 getAllDiversions() -> sequence
 Return a sorted list of all existing diversions.

 Filters:

 getFilter() -> filter
 Retrieve the current filter. None indicates no filter is installed.

 resetFilter()
 Reset the filter so that no filtering is done.

 nullFilter()
 Install a special null filter, one which consumes all text and never sends any text
 to the output.

 setFilter(filter)
 Install a new filter. A filter is None or an empty sequence representing no filter,
 or 0 for a null filter, a function for a function filter, a string for a string
 filter, or an instance of empy.Filter. If filter is a list of the above things,
 they will be chained together manually; if it is only one, it will be presumed to
 be solitary or to have already been manually chained together. See the "Filters"
 section for more information.

 Hooks:

 enableHooks()
 Enable invocation of hooks. By default hooks are enabled.

 disableHooks()
 Disable invocation of hooks. Hooks can still be added, removed, and queried, but
 invocation of hooks will not occur (even explicit invocation with empy.invokeHook).

 areHooksEnabled()
 Return whether or not hooks are presently enabled.

 getHooks(name)
 Get a list of the hooks associated with this name.

 clearHooks(name)
 Clear all hooks associated with this name.

 clearAllHooks(name)
 Clear all hooks associated with this name.

 addHook(name, hook, prepend_opt)
 Add this hook to the hooks associated with this name. By default, the hook is
 appended to the end of the existing hooks, if any; if the optional insert argument
 is present and true, it will be prepended to the list instead.

 removeHook(name, hook)
 Remove this hook from the hooks associated with this name.

 invokeHook(name_, ...)
 Manually invoke all the hooks associated with this name. The remaining arguments
 are treated as keyword arguments and the resulting dictionary is passed in as the
 second argument to the hooks.

 Invocation

 Basic invocation involves running the interpreter on an EmPy file and some optional
 arguments. If no file are specified, or the file is named -, EmPy takes its input from
 stdin. One can suppress option evaluation (to, say, specify a file that begins with a
 dash) by using the canonical -- option.

 -a/--append (filename)
 Open the specified file for append instead of using stdout.

 -f/--flatten
 Before processing, move the contents of the empy pseudomodule into the globals,
 just as if empy.flatten() were executed immediately after starting the interpreter.
 That is, e.g., empy.include can be referred to simply as include when this flag is
 specified on the command line. This can also be specified through the existence of
 the EMPY_FLATTEN environment variable.

 -h/--help
 Print usage and exit.

 -H/--extended-help
 Print extended usage and exit. Extended usage includes a rundown of all the legal
 expansions, escape sequences, pseudomodule contents, used hooks, and supported
 environment variables.

 -i/--interactive
 After the main EmPy file has been processed, the state of the interpreter is left
 intact and further processing is done from stdin. This is analogous to the Python
 interpreter's -i option, which allows interactive inspection of the state of the
 system after a main module is executed. This behaves as expected when the main file
 is stdin itself. This can also be specified through the existence of the
 EMPY_INTERACTIVE environment variable.

 -k/--suppress-errors
 Normally when an error is encountered, information about its location is printed
 and the EmPy interpreter exits. With this option, when an error is encountered
 (except for keyboard interrupts), processing stops and the interpreter enters
 interactive mode, so the state of affairs can be assessed. This is also helpful,
 for instance, when experimenting with EmPy in an interactive manner. -k implies -i.

 -o/--output (filename)
 Open the specified file for output instead of using stdout. If a file with that
 name already exists it is overwritten.

 -p/--prefix (prefix)
 Change the prefix used to detect expansions. The argument is the one-character
 string that will be used as the prefix. Note that whatever it is changed to, the
 way to represent the prefix literally is to double it, so if $ is the prefix, a
 literal dollar sign is represented with $$. Note that if the prefix is changed to
 one of the secondary characters (those that immediately follow the prefix to
 indicate the type of action EmPy should take), it will not be possible to represent
 literal prefix characters by doubling them (e.g., if the prefix were unadvisedly
 changed to # then ## would already have to represent a comment, so ## could not
 represent a literal #). This can also be specified through the EMPY_PREFIX
 environment variable.

 -r/--raw-errors
 Normally, EmPy catches Python exceptions and prints them alongside an error
 notation indicating the EmPy context in which it occurred. This option causes EmPy
 to display the full Python traceback; this is sometimes helpful for debugging. This
 can also be specified through the existence of the EMPY_RAW_ERRORS environment
 variable.

 -B/--buffered-output
 Fully buffer processing output, including the file open itself. This is helpful
 when, should an error occur, you wish that no output file be generated at all (for
 instance, when using EmPy in conjunction with make). When specified, either the -o
 or -a options must be specified (and the -B option must precede them; full
 buffering does not work with stdout. This can also be specified through the
 existence of the EMPY_BUFFERED_OUTPUT environment variable.

 -D/--define (assignment)
 Execute a Python assignment of the form variable = expression. If only a variable
 name is provided (i.e., the statement does not contain an = sign), then it is taken
 as being assigned to None. The -D option is simply a specialized -E option that
 special cases the lack of an assignment operator. Multiple -D options can be
 specified.

 -E/--execute (statement)
 Execute the Python (not EmPy) statement before processing any files. Multiple -E
 options can be specified.

 -F/--execute-file (filename)
 Execute the Python (not EmPy) file before processing any files. This is equivalent
 to -E execfile("filename") but provides a more readable context. Multiple -F
 options can be specified.

 -I/--import (module)
 Imports the specified module name before processing any files. Multiple modules can
 be specified by separating them by commas, or by specifying multiple -I options.

 -P/--preprocess (filename)
 Process the EmPy file before processing the primary EmPy file on the command line.

 -V/--version
 Print version and exit.

 Environment variables

 EmPy also supports a few environment variables to predefine certain behaviors. The
 settings chosen by environment variables can be overridden via command line arguments. The
 following environment variables have meaning to EmPy:

 EMPY_OPTIONS
 If present, the contents of this environment variable will be treated as options,
 just as if they were entered on the command line, before the actual command line
 arguments are processed. Note that these arguments are not processed by the shell,
 so quoting, filename globbing, and the like, will not work.

 EMPY_PREFIX
 If present, the value of this environment variable represents the prefix that will
 be used; this is equivalent to the -p command line option.

 EMPY_FLATTEN
 If defined, this is equivalent to including -f on the command line.

 EMPY_RAW_ERRORS
 If defined, this is equivalent to including -r on the command line.

 EMPY_INTERACTIVE
 If defined, this is equivalent to including -i on the command line.

 EMPY_BUFFERED_OUTPUT
 If defined, this is equivalent to including -B on the command line.

 Examples and testing EmPy

 See the sample EmPy file sample.em which is included with the distribution. Run EmPy on it
 by typing something like (presuming a UNIX-like operating system):
 ./em.py sample.em

 and compare the results and the sample source file side by side. The sample content is
 intended to be self-documenting.

 The file sample.bench is the benchmark output of the sample. Running the EmPy interpreter
 on the provided sample.em file should produce precisely the same results. You can run the
 provided test script to see if your EmPy environment is behaving as expected:
 ./test.sh

 By default this will test with the first Python interpreter available in the path; if you
 want to test with another interpreter, you can provide it as the first argument on the
 command line, e.g.:
 ./test.sh python2.1
 ./test.sh /usr/bin/python1.5
 ./test.sh jython

 Embedding EmPy

 Embedding EmPy into your application is quite simple. The relative complexity of the
 em.invoke function is due to handling every possible combination of options (via the
 command line and environment variables). An EmPy interpreter can be created with as code
 as simple as:
 import em
 interpreter = em.Interpreter()
 # The following prints the results to stdout:
 interpreter.string("@{x = 123}@x\n")
 # This expands to the same thing, but puts the results as a
 # string in the variable result:
 result = interpreter.expand("@{x = 123}@x\n")
 # Process an actual file (and output to stdout):
 interpreter.file('/path/to/some/file')

 When you are finished with your interpreter, it is important to call its shutdown method:
 interpreter.shutdown()

 This will ensure that the interpreter cleans up all its overhead, entries in the
 sys.stdout proxy, and so forth. It is usually advisable that this be used in a
 try...finally clause:
 interpreter = em.Interpreter(...)
 try:
 ...
 finally:
 interpreter.shutdown()

 The em.Interpreter constructor takes the following arguments; all are optional:

 output
 The output file which the interpreter will be sending all its processed data to.
 This need only be a file-like object; it need not be an actual file. If omitted,
 sys.__stdout__ is used.

 argv
 An argument list analogous to sys.argv, consisting of the script name and zero or
 more arguments. These are available to executing interpreters via empy.argv and
 empy.args. If omitted, a non-descript script name is used with no arguments.

 prefix
 The single character prefix. Defaults to @.

 options
 A dictionary of options that can override the default behavior of the interpreter.
 The names of the options are constant names ending in _OPT and their defaults are
 given in Interpreter.DEFAULT_OPTIONS.

 globals
 By default, interpreters begin with a pristine dictionary of globals (except, of
 course, for the empy pseudomodule). Specifying this argument will allow the globals
 to start with more.

 Many things can be done with EmPy interpreters; for the full developer documentation, see
 the generated documentation for the em module.

 Interpreter options

 The following options (passed in as part of the options dictionary to the Interpreter
 constructor) have the following meanings. The defaults are shown below and are also
 indicated in an Interpreter.DEFAULT_OPTIONS dictionary.

 BANGPATH_OPT
 Should a bangpath (#!) as the first line of an EmPy file be treated as if it were
 an EmPy comment? Note that #! sequences starting lines or appearing anywhere else
 in the file are untouched regardless of the value of this option. Default: true.

 BUFFERED_OPT
 Should an abort method be called upon failure? This relates to the fully-buffered
 option, where all output can be buffered including the file open; this option only
 relates to the interpreter's behavior after that proxy file object has been
 created. Default: false.

 RAW_OPT
 Should errors be displayed as raw Python errors (that is, the exception is allowed
 to propagate through to the toplevel so that the user gets a standard Python
 traceback)? Default: false.

 EXIT_OPT
 Upon an error, should execution continue (although the interpreter stacks will be
 purged)? Note that even in the event this is set, the interpreter will halt upon
 receiving a KeyboardInterrupt. Default: true.

 FLATTEN_OPT
 Upon initial startup, should the empy pseudomodule namespace be flattened, i.e.,
 should empy.flatten be called? Note this option only has an effect when the
 interpreter is first created; thereafter it is ignored. Default: false.

 Known issues and caveats

 * EmPy was primarily intended for static processing of documents, rather than dynamic
 use, and hence speed of processing was not a major consideration in its design.
 * EmPy is not threadsafe.
 * Expressions (@(...)) are intended primarily for their return value; statements
 (@{...}) are intended primarily for their side effects, including of course printing.
 If an expression is expanded that as a side effect prints something, then the printing
 side effects will appear in the output before the expansion of the expression value.
 * Due to Python's curious handling of the print keyword -- particularly the form with a
 trailing comma to suppress the final newline -- mixing statement expansions using
 prints inline with unexpanded text will often result in surprising behavior, such as
 extraneous (sometimes even deferred!) spaces. This is a Python "feature," and occurs
 in non-EmPy applications as well; for finer control over output formatting, use
 sys.stdout.write or empy.interpreter.write (these will do the same thing) directly.
 * To function properly, EmPy must override sys.stdout with a proxy file object, so that
 it can capture output of side effects and support diversions for each interpreter
 instance. It is important that code executed in an environment not rebind sys.stdout,
 although it is perfectly legal to invoke it explicitly (e.g., @sys.stdout.write("Hello
 world\n")). If one really needs to access the "true" stdout, then use sys.__stdout__
 instead (which should also not be rebound). EmPy uses the standard Python error
 handlers when exceptions are raised in EmPy code, which print to sys.stderr.
 * The empy "module" exposed through the EmPy interface (e.g., @empy) is an artificial
 module. It cannot be imported with the import statement (and shouldn't -- it is an
 artifact of the EmPy processing system and does not correspond to any accessible .py
 file).
 * For an EmPy statement expansion all alone on a line, e.g., @{a = 1}, note that this
 will expand to a blank line due to the newline following the closing curly brace. To
 suppress this blank line, use the symmetric convention @{a = 1}@.
 * When using EmPy with make, note that partial output may be created before an error
 occurs; this is a standard caveat when using make. To avoid this, write to a temporary
 file and move when complete, delete the file in case of an error, use the -B option to
 fully buffer output (including the open), or (with GNU make) define a .DELETE_ON_ERROR
 target.
 * empy.identify tracks the context of executed EmPy code, not Python code. This means
 that blocks of code delimited with @{ and } will identify themselves as appearing on
 the line at which the } appears, and that pure Python code executed via the -D, -E and
 -F command line arguments will show up as all taking place on line 1. If you're
 tracking errors and want more information about the location of the errors from the
 Python code, use the -r command line option, which will provide you with the full
 Python traceback.

 Wish list

 Here are some random ideas for future revisions of EmPy. If any of these are of particular
 interest to you, your input would be appreciated.
 * Some real-world examples should really be included for demonstrating the power and
 expressiveness of EmPy first-hand.
 * A "trivial" mode, where all the EmPy system does is scan for simple tokens replace
 them with evaluations/executions, rather than having to do the contextual scanning it
 does now. This has the down side of being much less configurable and powerful but the
 upside of being extremely efficient. Perhaps this need not be a separate mode, but an
 additional prefix something of the form @<(...)>, @<{...}>, and possibly @<[12][...]>?
 Setting the trivial mode might simply disallow other expansions.
 * A "debug" mode, where EmPy prints the contents of everything it's about to evaluate
 (probably to stderr) before it does?
 * The ability to funnel all code through a configurable RExec for user-controlled
 security control. This would probably involve abstracting the execution functionality
 outside of the interpreter.
 * Optimized handling of processing would be nice for the possibility of an Apache module
 devoted to EmPy processing.
 * An EmPy emacs mode.
 * An "unbuffered" option which would lose contextual information like line numbers, but
 could potentially be more efficient at processing large files.
 * An optimization of offloading diversions to files when they become truly huge.
 * Unicode support, particularly for filters. (This may be problematic given Python 1.5.2
 support.)
 * Support for mapping filters (specified by dictionaries).
 * Support for some sort of batch processing, where several EmPy files can be listed at
 once and all of them evaluated with the same initial (presumably expensive)
 environment.
 * A more elaborate interactive mode, perhaps with a prompt and readline support.
 * A toplevel run function, which invoke delegates to, that accepts arguments similar to
 the command line as keyword arguments. Perhaps also a simplified wrapper just for
 doing basic processing, e.g., interpreter.simple?
 * A tool to collect significator information from a hierarchy of .em files and put them
 in a database form available for individual scripts would be extremely useful.
 * A StructuredText and/or reStructuredText filter would be quite useful, as would
 SGML/HTML/XML, s-expression, Python, etc. auto-indenter filters.
 * A caching system that stores off the compilations of repeated evaluations and
 executions so that in a persistent environment the same code does not have to be
 repeatedly evaluated/executed. This would probably be a necessity in an Apache
 module-based solution.
 * An option to change the format of the standard EmPy messages in a traceback.
 * An "binary" option to have EmPy process incoming data in chunks, rather than by lines,
 for handling of non-textual data or data which may not contain predictably short
 lines.
 * Support for some manner of implicitly processed /etc/empyrc and/or ~/.empyrc file, and
 of course an option to inhibit its processing. This can already be accomplished via an
 explicit EMPY_OPTIONS, but still ...
 * More uniform handling of the preprocessing directives (-I, -D, -E, -F, and -P),
 probably mapping directly to methods in the Interpreter class.
 * distutils support.

 Author's notes

 I originally conceived EmPy as a replacement for my [13]Web templating system which uses
 [14]m4 (a general macroprocessing system for UNIX).

 Most of my Web sites include a variety of m4 files, some of which are dynamically
 generated from databases, which are then scanned by a cataloging tool to organize them
 hierarchically (so that, say, a particular m4 file can understand where it is in the
 hierarchy, or what the titles of files related to it are without duplicating information);
 the results of the catalog are then written in database form as an m4 file (which every
 other m4 file implicitly includes), and then GNU make converts each m4 to an HTML file by
 processing it.

 As the Web sites got more complicated, the use of m4 (which I had originally enjoyed for
 the challenge and abstractness) really started to become an impediment to serious work;
 while I am very knowledgeable about m4 -- having used it for for so many years -- getting
 even simple things done with it is awkward and difficult. Worse yet, as I started to use
 Python more and more over the years, the cataloging programs which scanned the m4 and
 built m4 databases were migrated to Python and made almost trivial, but writing out huge
 awkward tables of m4 definitions simply to make them accessible in other m4 scripts
 started to become almost farcical -- especially when coupled with the difficulty in
 getting simple things done in m4.

 It occurred to me what I really wanted was an all-Python solution. But replacing what used
 to be the m4 files with standalone Python programs would result in somewhat awkward
 programs normally consisting mostly of unprocessed text punctuated by small portions where
 variables and small amounts of code need to be substituted. Thus the idea was a sort of
 inverse of a Python interpreter: a program that normally would just pass text through
 unmolested, but when it found a special signifier would execute Python code in a
 persistent environment. After considering between choices of signifiers, I settled on @
 and EmPy was born.

 As I developed the tool, I realized it could have general appeal, even to those with
 widely varying problems to solve, provided the core tool they needed was an interpreter
 that could embed Python code inside templated text. As I continue to use the tool, I have
 been adding features as unintrusively as possible as I see areas that can be improved.

 A design goal of EmPy is that its feature set should work on several levels; at each
 level, if the user does not wish or need to use features from another level, they are
 under no obligation to do so. If you have no need of substitutions, for instance, you are
 under no obligation to use them. If significators will not help you organize a set of EmPy
 scripts globally, then you need not use them. New features that are being added are
 whenever possible transparently backward compatible; if you do not need them, their
 introduction should not affect you in any way. The use of unknown prefix sequences results
 in errors, guaranteeing that they are reserved for future use.

 Release history

 * 2.3; 2003 Feb 20. Proper and full support for concurrent and recursive interpreters;
 protection from closing the true stdout file object; detect edge cases of interpreter
 globals or sys.stdout proxy collisions; add globals manipulation functions
 empy.getGlobals, empy.setGlobals, and empy.updateGlobals which properly preserve the
 empy pseudomodule; separate usage info out into easily accessible lists for easier
 presentation; have -h option show simple usage and -H show extened usage; add NullFile
 utility class.
 * 2.2.6; 2003 Jan 30. Fix a bug in the Filter.detach method (which would not normally be
 called anyway).
 * 2.2.5; 2003 Jan 9. Strip carriage returns out of executed code blocks for DOS/Windows
 compatibility.
 * 2.2.4; 2002 Dec 23. Abstract Filter interface to use methods only; add @[noop: ...]
 substitution for completeness and block commenting.
 * 2.2.3; 2002 Dec 16. Support compatibility with Jython by working around a minor
 difference between CPython and Jython in string splitting.
 * 2.2.2; 2002 Dec 14. Include better docstrings for pseudomodule functions; segue to a
 dictionary-based options system for interpreters; add empy.clearAllHooks and
 'empy.clearGlobals'; include a short documentation section on embedding interpreters;
 fix a bug in significator regular expression.
 * 2.2.1; 2002 Nov 30. Tweak test script to avoid writing unnecessary temporary file; add
 Interpreter.single method; expose evaluate, execute, substitute, and single methods to
 the pseudomodule; add (rather obvious) EMPY_OPTIONS environment variable support; add
 empy.enableHooks and 'empy.disableHooks'; include optimization to transparently
 disable hooks until they are actually used.
 * 2.2; 2002 Nov 21. Switched to -V option for version information; empy.createDiversion
 for creating initially empty diversion; direct access to diversion objects with
 'empy.retrieveDiversion'; environment variable support; removed --raw long argument
 (use --raw-errors instead); added quaternary escape code (well, why not).
 * 2.1; 2002 Oct 18. empy.atExit registry separate from hooks to allow for normal
 interpreter support; include a benchmark sample and test.sh verification script;
 expose empy.string directly; -D option for explicit defines on command line; remove
 ill-conceived support for @else: separator in @[if ...] substitution; handle nested
 substitutions properly; @[macro ...] substitution for creating recallable expansions.
 * 2.0.1; 2002 Oct 8. Fix missing usage information; fix after_evaluate hook not getting
 called; add empy.atExit call to register values.
 * 2.0; 2002 Sep 30. Parsing system completely revamped and simplified, eliminating a
 whole class of context-related bugs; builtin support for buffered filters; support for
 registering hooks; support for command line arguments; interactive mode with -i;
 significator value extended to be any valid Python expression.
 * 1.5.1; 2002 Sep 24. Allow @] to represent unbalanced close brackets in @[...] markups
 [now defunct; use escape codes instead].
 * 1.5; 2002 Sep 18. Escape codes (@\...); conditional and repeated expansion
 substitutions via @[if E:...], @[for X in E:...], and @[while E:...] notations; fix a
 few bugs involving files which do not end in newlines.
 * 1.4; 2002 Sep 7. Fix bug with triple quotes; collapse conditional and protected
 expression syntaxes into the single generalized @(...) notation; empy.setName and
 empy.setLine functions; true support for multiple concurrent interpreters with
 improved sys.stdout proxy; proper support for empy.expand to return a string evaluated
 in a subinterpreter as intended; merged Context and Parser classes together, and
 separated out Scanner functionality.
 * 1.3; 2002 Aug 24. Pseudomodule as true instance; move toward more verbose (and clear)
 pseudomodule functions; fleshed out diversion model; filters; conditional expressions;
 protected expressions; preprocessing with -P (in preparation for possible support for
 command line arguments).
 * 1.2; 2002 Aug 16. Treat bangpaths as comments; empy.quote for the opposite process of
 'empy.expand'; significators (@%... sequences); -I option; -f option; much improved
 documentation.
 * 1.1.5; 2002 Aug 15. Add a separate invoke function that can be called multiple times
 with arguments to simulate multiple runs.
 * 1.1.4; 2002 Aug 12. Handle strings thrown as exceptions properly; use getopt to
 process command line arguments; cleanup file buffering with AbstractFile; very slight
 documentation and code cleanup.
 * 1.1.3; 2002 Aug 9. Support for changing the prefix from within the empy pseudomodule.
 * 1.1.2; 2002 Aug 5. Renamed buffering option to -B, added -F option for interpreting
 Python files from the command line, fixed improper handling of exceptions from command
 line options (-E, -F).
 * 1.1.1; 2002 Aug 4. Typo bugfixes; documentation clarification.
 * 1.1; 2002 Aug 4. Added option for fully buffering output (including file opens),
 executing commands through the command line; some documentation errors fixed.
 * 1.0; 2002 Jul 23. Renamed project to EmPy. Documentation and sample tweaks; added
 empy.flatten. Added -a option.
 * 0.3; 2002 Apr 14. Extended "simple expression" syntax, interpreter abstraction, proper
 context handling, better error handling, explicit file inclusion, extended samples.
 * 0.2; 2002 Apr 13. Bugfixes, support non-expansion of Nones, allow choice of alternate
 prefix.
 * 0.1.1; 2002 Apr 12. Bugfixes, support for Python 1.5.x, add -r option.
 * 0.1; 2002 Apr 12. Initial early access release.

 Author

 This module was written by [15]Erik Max Francis. If you use this software, have
 suggestions for future releases, or bug reports, [16]I'd love to hear about it.

 Even if you try out EmPy for a project and find it unsuitable, I'd like to know what
 stumbling blocks you ran into so they can potentially be addressed in a future version.

 Version

 Version 2.3 $Date$ $Author$

 Modules and Packages
 [17]em

 A system for processing Python as markup embedded in text.

 [18]Table of Contents
 This document was automatically generated on Thu Feb 20 03:56:27 2003 by [19]HappyDoc
 version 2.0.1

References

 Visible links
 1. file://localhost/home/shafi/pak/empy-2.3/doc/index.html
 2. file://localhost/home/shafi/pak/empy-2.3/doc/index.html#refindex
 3. http://www.alcyone.com/pyos/empy/empy-latest.tar.gz
 4. http://www.alcyone.com/pyos/empy/
 5. http://www.gnu.org/copyleft/gpl.html
 6. mailto:empy-announce-list-subscribe@alcyone.com
 7. mailto:empy-list-subscribe@alcyone.com
 8. file://localhost/home/shafi/pak/empy-2.3/doc/index.html#refindex
 9. file://localhost/home/shafi/pak/empy-2.3/doc/index.html#refname
 10. file://localhost/home/shafi/pak/empy-2.3/doc/index.html#refsub
 11. file://localhost/home/shafi/pak/empy-2.3/doc/index.html#refi
 12. file://localhost/home/shafi/pak/empy-2.3/doc/index.html#ref...
 13. http://www.alcyone.com/max/info/m4.html
 14. http://www.seindal.dk/rene/gnu/
 15. http://www.alcyone.com/max/
 16. mailto:pyos@alcyone.com
 17. file://localhost/home/shafi/pak/empy-2.3/doc/em.py.html
 18. file://localhost/home/shafi/pak/empy-2.3/doc/index.html
 19. http://happydoc.sourceforge.net/

 Hidden links:
 20. file://localhost/home/shafi/pak/empy-2.3/doc/index.html#index

 Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	ecell3 3.2.3pre2 documentation

Index

 Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/file.png

python-basics.html

 Navigation

 		
 index

 		ecell3 3.2.3pre2 documentation »

Python Basics for E-Cell Users

In Python, setting values of variables is a very simple job as in most
other languages. For example, to set a string to a variable, use single
quotes: CLASSNAME = ‘NuclearFusionProcess’

Numbers doesn’t need the quotation: FOOVAR = 3.11

To set a multiple line string, use triple quotes: DESCRIPTION = ‘’’ some
multi-line description. ‘’‘

 © Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

users-manual.html

 Navigation

 		
 index

 		ecell3 3.2.3pre2 documentation »

 INTRO RUNNING MODELING MODELINGTUTORIAL SCRIPTING DM STDDMLIB
INSIDE-ECELL
About APP
=========

APP was written by Koichi Takahashi (shafi@e-cell.org). To find more
information about APP, please visit the E-Cell Project Web
page [http://www.e-cell.org].

To report a bug or make a suggestion regarding this application or this
manual, follow the directions in the webpage.

This program is distributed under the terms of slightly modified version
of the GNU General Public license version 2 as published by the Free
Software Foundation. See the COPYING file distributed with the package.

EMPY-MANUAL

 © Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

session-class-api.html

 Navigation

 		
 index

 		ecell3 3.2.3pre2 documentation »

 © Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

_static/comment.png

search.html

 Navigation

 		
 index

 		ecell3 3.2.3pre2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

objectstubs-api.html

 Navigation

 		
 index

 		ecell3 3.2.3pre2 documentation »

 © Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

ecddatafile-api.html

 Navigation

 		
 index

 		ecell3 3.2.3pre2 documentation »

		ECDDataFile methods.
		

		ECDDataFile(data = None)
		None

		Constructor. data must be a rank-2 array object of Numeric Python or an equivalent object. If data is not given, an empty matrix ([[]]) is set.
		

		getData()
		An array

		This method returns the data as a rank-2 array of Numeric Python.
		

		getDataName()
		A string

		This method returns a name of the data. The default value of the name is an empty string ('').
		

		getFileName()
		A string

		If either loading or saving of the data from a file is succeeded, this method returns the name of the file. Otherwise this method returns an empty string ('').
		

		getLabel()
		A tuple

		This method returns the list of axis names as a tuple containing string objects. The default value is ('t', 'value', 'avg', 'min', 'max').
		

		getNote()
		A string

		This method returns a note field of this ECDDataFile object. The return value is either a single line or a multiline string object.
		

		load(filename)
		None

		This method loads data from a file filename.
		

		save(filename)
		None

		This method saves the data to a file filename.
		

		setData(data)
		None

		This method replaces the data of this ECDDataFile object by data. data must be a rank-2 array of Numeric Python or an equivalent object.
		

		setDataName(name)
		None

		This method sets the name of this data. name must be a string without a newline.
		

		setLabel(labels)
		None

		This method names axes of the data. labels must be a Python Sequence containing the name of the axes as strings.
		

		setNote(note)
		None

		This method sets the note field of this ECDDataFile object. note must be a string object. It can be either a single- or multi-line.
		

Table: ECDDataFile class method list

 © Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

cpp-basics.html

 Navigation

 		
 index

 		ecell3 3.2.3pre2 documentation »

C++ Basics for E-Cell Users

types, declarations, variables, if, for loops, while loops, STL
basics...

 © Copyright 2013, E-Cell project.
 Created using Sphinx 1.3.1.

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down.png

_static/minus.png

